soju/upstream.go

1827 lines
46 KiB
Go
Raw Normal View History

2020-03-13 10:13:03 -07:00
package soju
import (
"crypto"
"crypto/sha256"
"crypto/tls"
"crypto/x509"
"encoding/base64"
"errors"
"fmt"
"io"
"net"
2020-02-06 10:22:04 -08:00
"strconv"
"strings"
2020-02-06 10:22:04 -08:00
"time"
"unicode"
"unicode/utf8"
"github.com/emersion/go-sasl"
"gopkg.in/irc.v3"
)
2020-04-30 07:10:39 -07:00
// permanentUpstreamCaps is the static list of upstream capabilities always
// requested when supported.
var permanentUpstreamCaps = map[string]bool{
"away-notify": true,
"batch": true,
"extended-join": true,
"invite-notify": true,
2020-04-30 07:10:39 -07:00
"labeled-response": true,
"message-tags": true,
"multi-prefix": true,
2020-04-30 07:10:39 -07:00
"server-time": true,
}
type registrationError string
func (err registrationError) Error() string {
return fmt.Sprintf("registration error: %v", string(err))
}
2020-02-06 10:22:04 -08:00
type upstreamChannel struct {
2020-03-25 21:51:47 -07:00
Name string
conn *upstreamConn
Topic string
TopicWho *irc.Prefix
2020-03-25 21:51:47 -07:00
TopicTime time.Time
Status channelStatus
modes channelModes
creationTime string
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
Members membershipsCasemapMap
2020-03-25 21:51:47 -07:00
complete bool
detachTimer *time.Timer
}
func (uc *upstreamChannel) updateAutoDetach(dur time.Duration) {
if uc.detachTimer != nil {
uc.detachTimer.Stop()
uc.detachTimer = nil
}
if dur == 0 {
return
}
uc.detachTimer = time.AfterFunc(dur, func() {
uc.conn.network.user.events <- eventChannelDetach{
uc: uc.conn,
name: uc.Name,
}
})
2020-02-06 10:22:04 -08:00
}
type upstreamConn struct {
conn
network *network
user *user
2020-02-06 08:04:49 -08:00
serverName string
availableUserModes string
availableChannelModes map[byte]channelModeType
availableChannelTypes string
availableMemberships []membership
2021-03-15 15:06:36 -07:00
isupport map[string]*string
2020-02-06 10:22:04 -08:00
registered bool
nick string
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
nickCM string
username string
realname string
modes userModes
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
channels upstreamChannelCasemapMap
supportedCaps map[string]string
caps map[string]bool
batches map[string]batch
away bool
nextLabelID uint64
saslClient sasl.Client
saslStarted bool
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
casemapIsSet bool
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
// set of LIST commands in progress, per downstream
pendingLISTDownstreamSet map[uint64]struct{}
}
func connectToUpstream(network *network) (*upstreamConn, error) {
logger := &prefixLogger{network.user.srv.Logger, fmt.Sprintf("upstream %q: ", network.Addr)}
dialer := net.Dialer{Timeout: connectTimeout}
u, err := network.URL()
if err != nil {
return nil, err
}
var netConn net.Conn
switch u.Scheme {
case "ircs":
addr := u.Host
host, _, err := net.SplitHostPort(u.Host)
if err != nil {
host = u.Host
addr = u.Host + ":6697"
}
logger.Printf("connecting to TLS server at address %q", addr)
tlsConfig := &tls.Config{ServerName: host, NextProtos: []string{"irc"}}
if network.SASL.Mechanism == "EXTERNAL" {
if network.SASL.External.CertBlob == nil {
return nil, fmt.Errorf("missing certificate for authentication")
}
if network.SASL.External.PrivKeyBlob == nil {
return nil, fmt.Errorf("missing private key for authentication")
}
key, err := x509.ParsePKCS8PrivateKey(network.SASL.External.PrivKeyBlob)
if err != nil {
return nil, fmt.Errorf("failed to parse private key: %v", err)
}
tlsConfig.Certificates = []tls.Certificate{
{
Certificate: [][]byte{network.SASL.External.CertBlob},
PrivateKey: key.(crypto.PrivateKey),
},
}
logger.Printf("using TLS client certificate %x", sha256.Sum256(network.SASL.External.CertBlob))
}
netConn, err = dialer.Dial("tcp", addr)
if err != nil {
return nil, fmt.Errorf("failed to dial %q: %v", addr, err)
}
// Don't do the TLS handshake immediately, because we need to register
// the new connection with identd ASAP. See:
// https://todo.sr.ht/~emersion/soju/69#event-41859
netConn = tls.Client(netConn, tlsConfig)
case "irc+insecure":
addr := u.Host
if _, _, err := net.SplitHostPort(addr); err != nil {
addr = addr + ":6667"
}
logger.Printf("connecting to plain-text server at address %q", addr)
netConn, err = dialer.Dial("tcp", addr)
if err != nil {
return nil, fmt.Errorf("failed to dial %q: %v", addr, err)
}
case "irc+unix", "unix":
logger.Printf("connecting to Unix socket at path %q", u.Path)
netConn, err = dialer.Dial("unix", u.Path)
if err != nil {
return nil, fmt.Errorf("failed to connect to Unix socket %q: %v", u.Path, err)
}
default:
return nil, fmt.Errorf("failed to dial %q: unknown scheme: %v", network.Addr, u.Scheme)
}
options := connOptions{
2020-08-20 00:13:56 -07:00
Logger: logger,
RateLimitDelay: upstreamMessageDelay,
RateLimitBurst: upstreamMessageBurst,
}
uc := &upstreamConn{
conn: *newConn(network.user.srv, newNetIRCConn(netConn), &options),
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
network: network,
user: network.user,
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
channels: upstreamChannelCasemapMap{newCasemapMap(0)},
supportedCaps: make(map[string]string),
caps: make(map[string]bool),
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
batches: make(map[string]batch),
availableChannelTypes: stdChannelTypes,
availableChannelModes: stdChannelModes,
availableMemberships: stdMemberships,
2021-03-15 15:06:36 -07:00
isupport: make(map[string]*string),
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
pendingLISTDownstreamSet: make(map[uint64]struct{}),
}
return uc, nil
}
func (uc *upstreamConn) forEachDownstream(f func(*downstreamConn)) {
uc.network.forEachDownstream(f)
}
func (uc *upstreamConn) forEachDownstreamByID(id uint64, f func(*downstreamConn)) {
uc.forEachDownstream(func(dc *downstreamConn) {
if id != 0 && id != dc.id {
return
}
f(dc)
})
}
func (uc *upstreamConn) getChannel(name string) (*upstreamChannel, error) {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := uc.channels.Value(name)
if ch == nil {
2020-02-06 10:22:04 -08:00
return nil, fmt.Errorf("unknown channel %q", name)
}
return ch, nil
}
func (uc *upstreamConn) isChannel(entity string) bool {
return strings.ContainsRune(uc.availableChannelTypes, rune(entity[0]))
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
func (uc *upstreamConn) isOurNick(nick string) bool {
return uc.nickCM == uc.network.casemap(nick)
}
func (uc *upstreamConn) getPendingLIST() *pendingLIST {
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
for _, pl := range uc.user.pendingLISTs {
if _, ok := pl.pendingCommands[uc.network.ID]; !ok {
continue
}
return &pl
}
return nil
}
func (uc *upstreamConn) endPendingLISTs(all bool) (found bool) {
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
found = false
for i := 0; i < len(uc.user.pendingLISTs); i++ {
pl := uc.user.pendingLISTs[i]
if _, ok := pl.pendingCommands[uc.network.ID]; !ok {
continue
}
delete(pl.pendingCommands, uc.network.ID)
if len(pl.pendingCommands) == 0 {
uc.user.pendingLISTs = append(uc.user.pendingLISTs[:i], uc.user.pendingLISTs[i+1:]...)
i--
uc.forEachDownstreamByID(pl.downstreamID, func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_LISTEND,
Params: []string{dc.nick, "End of /LIST"},
})
})
}
found = true
if !all {
delete(uc.pendingLISTDownstreamSet, pl.downstreamID)
uc.user.forEachUpstream(func(uc *upstreamConn) {
uc.trySendLIST(pl.downstreamID)
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
})
return
}
}
return
}
func (uc *upstreamConn) trySendLIST(downstreamID uint64) {
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
if _, ok := uc.pendingLISTDownstreamSet[downstreamID]; ok {
// a LIST command is already pending
// we will try again when that command is completed
return
}
for _, pl := range uc.user.pendingLISTs {
if pl.downstreamID != downstreamID {
continue
}
// this is the first pending LIST command list of the downstream
listCommand, ok := pl.pendingCommands[uc.network.ID]
if !ok {
// there is no command for this upstream in these LIST commands
// do not send anything
continue
}
// there is a command for this upstream in these LIST commands
// send it now
uc.SendMessageLabeled(downstreamID, listCommand)
uc.pendingLISTDownstreamSet[downstreamID] = struct{}{}
return
}
}
func (uc *upstreamConn) parseMembershipPrefix(s string) (ms *memberships, nick string) {
memberships := make(memberships, 0, 4)
i := 0
for _, m := range uc.availableMemberships {
if i >= len(s) {
break
}
if s[i] == m.Prefix {
memberships = append(memberships, m)
i++
}
}
return &memberships, s[i:]
}
func isWordBoundary(r rune) bool {
switch r {
case '-', '_', '|':
return false
case '\u00A0':
return true
default:
return !unicode.IsLetter(r) && !unicode.IsNumber(r)
}
}
func isHighlight(text, nick string) bool {
for {
i := strings.Index(text, nick)
if i < 0 {
return false
}
// Detect word boundaries
var left, right rune
if i > 0 {
left, _ = utf8.DecodeLastRuneInString(text[:i])
}
if i < len(text) {
right, _ = utf8.DecodeRuneInString(text[i+len(nick):])
}
if isWordBoundary(left) && isWordBoundary(right) {
return true
}
text = text[i+len(nick):]
}
}
func (uc *upstreamConn) handleMessage(msg *irc.Message) error {
var label string
if l, ok := msg.GetTag("label"); ok {
label = l
}
2020-03-22 19:18:16 -07:00
var msgBatch *batch
if batchName, ok := msg.GetTag("batch"); ok {
b, ok := uc.batches[batchName]
if !ok {
return fmt.Errorf("unexpected batch reference: batch was not defined: %q", batchName)
}
msgBatch = &b
if label == "" {
label = msgBatch.Label
}
delete(msg.Tags, "batch")
}
var downstreamID uint64 = 0
if label != "" {
var labelOffset uint64
n, err := fmt.Sscanf(label, "sd-%d-%d", &downstreamID, &labelOffset)
if err == nil && n < 2 {
err = errors.New("not enough arguments")
}
if err != nil {
return fmt.Errorf("unexpected message label: invalid downstream reference for label %q: %v", label, err)
}
2020-03-22 19:18:16 -07:00
}
2020-04-03 11:48:23 -07:00
if _, ok := msg.Tags["time"]; !ok {
msg.Tags["time"] = irc.TagValue(time.Now().UTC().Format(serverTimeLayout))
2020-04-03 11:48:23 -07:00
}
switch msg.Command {
case "PING":
uc.SendMessage(&irc.Message{
Command: "PONG",
2020-02-18 11:40:32 -08:00
Params: msg.Params,
})
return nil
case "NOTICE", "PRIVMSG", "TAGMSG":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
var entity, text string
if msg.Command != "TAGMSG" {
if err := parseMessageParams(msg, &entity, &text); err != nil {
return err
}
} else {
if err := parseMessageParams(msg, &entity); err != nil {
return err
}
}
if msg.Prefix.Name == serviceNick {
uc.logger.Printf("skipping %v from soju's service: %v", msg.Command, msg)
break
}
if entity == serviceNick {
uc.logger.Printf("skipping %v to soju's service: %v", msg.Command, msg)
break
}
if msg.Prefix.User == "" && msg.Prefix.Host == "" { // server message
2020-04-06 12:42:55 -07:00
uc.produce("", msg, nil)
} else { // regular user message
target := entity
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(target) {
target = msg.Prefix.Name
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := uc.network.channels.Value(target)
if ch != nil {
if ch.Detached {
uc.handleDetachedMessage(msg.Prefix.Name, text, ch)
}
highlight := msg.Prefix.Name != uc.nick && isHighlight(text, uc.nick)
if ch.DetachOn == FilterMessage || ch.DetachOn == FilterDefault || (ch.DetachOn == FilterHighlight && highlight) {
uc.updateChannelAutoDetach(target)
}
}
uc.produce(target, msg, nil)
}
2020-03-13 03:26:43 -07:00
case "CAP":
var subCmd string
if err := parseMessageParams(msg, nil, &subCmd); err != nil {
return err
2020-03-13 03:26:43 -07:00
}
subCmd = strings.ToUpper(subCmd)
subParams := msg.Params[2:]
switch subCmd {
case "LS":
if len(subParams) < 1 {
return newNeedMoreParamsError(msg.Command)
}
2020-04-30 06:27:41 -07:00
caps := subParams[len(subParams)-1]
more := len(subParams) >= 2 && msg.Params[len(subParams)-2] == "*"
2020-04-30 06:27:41 -07:00
uc.handleSupportedCaps(caps)
if more {
break // wait to receive all capabilities
}
2020-04-30 06:27:41 -07:00
uc.requestCaps()
if uc.requestSASL() {
break // we'll send CAP END after authentication is completed
}
2020-03-13 03:26:43 -07:00
uc.SendMessage(&irc.Message{
Command: "CAP",
Params: []string{"END"},
})
case "ACK", "NAK":
if len(subParams) < 1 {
return newNeedMoreParamsError(msg.Command)
}
caps := strings.Fields(subParams[0])
for _, name := range caps {
if err := uc.handleCapAck(strings.ToLower(name), subCmd == "ACK"); err != nil {
return err
}
}
2020-04-30 06:27:41 -07:00
if uc.registered {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.updateSupportedCaps()
})
}
case "NEW":
if len(subParams) < 1 {
return newNeedMoreParamsError(msg.Command)
}
uc.handleSupportedCaps(subParams[0])
uc.requestCaps()
case "DEL":
if len(subParams) < 1 {
return newNeedMoreParamsError(msg.Command)
}
caps := strings.Fields(subParams[0])
for _, c := range caps {
delete(uc.supportedCaps, c)
delete(uc.caps, c)
}
if uc.registered {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.updateSupportedCaps()
})
}
default:
uc.logger.Printf("unhandled message: %v", msg)
}
case "AUTHENTICATE":
if uc.saslClient == nil {
return fmt.Errorf("received unexpected AUTHENTICATE message")
}
// TODO: if a challenge is 400 bytes long, buffer it
var challengeStr string
if err := parseMessageParams(msg, &challengeStr); err != nil {
uc.SendMessage(&irc.Message{
Command: "AUTHENTICATE",
Params: []string{"*"},
})
return err
}
var challenge []byte
if challengeStr != "+" {
var err error
challenge, err = base64.StdEncoding.DecodeString(challengeStr)
if err != nil {
uc.SendMessage(&irc.Message{
Command: "AUTHENTICATE",
Params: []string{"*"},
})
return err
}
}
var resp []byte
var err error
if !uc.saslStarted {
_, resp, err = uc.saslClient.Start()
uc.saslStarted = true
} else {
resp, err = uc.saslClient.Next(challenge)
}
if err != nil {
uc.SendMessage(&irc.Message{
Command: "AUTHENTICATE",
Params: []string{"*"},
})
return err
}
// TODO: send response in multiple chunks if >= 400 bytes
var respStr = "+"
if len(resp) != 0 {
respStr = base64.StdEncoding.EncodeToString(resp)
}
uc.SendMessage(&irc.Message{
Command: "AUTHENTICATE",
Params: []string{respStr},
})
case irc.RPL_LOGGEDIN:
var account string
if err := parseMessageParams(msg, nil, nil, &account); err != nil {
return err
2020-03-13 03:26:43 -07:00
}
uc.logger.Printf("logged in with account %q", account)
case irc.RPL_LOGGEDOUT:
uc.logger.Printf("logged out")
case irc.ERR_NICKLOCKED, irc.RPL_SASLSUCCESS, irc.ERR_SASLFAIL, irc.ERR_SASLTOOLONG, irc.ERR_SASLABORTED:
var info string
if err := parseMessageParams(msg, nil, &info); err != nil {
return err
}
switch msg.Command {
case irc.ERR_NICKLOCKED:
uc.logger.Printf("invalid nick used with SASL authentication: %v", info)
case irc.ERR_SASLFAIL:
uc.logger.Printf("SASL authentication failed: %v", info)
case irc.ERR_SASLTOOLONG:
uc.logger.Printf("SASL message too long: %v", info)
}
uc.saslClient = nil
uc.saslStarted = false
uc.SendMessage(&irc.Message{
Command: "CAP",
Params: []string{"END"},
})
2020-02-06 07:39:09 -08:00
case irc.RPL_WELCOME:
uc.registered = true
uc.logger.Printf("connection registered")
2020-02-06 10:22:04 -08:00
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.network.channels.Len() > 0 {
var channels, keys []string
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
for _, entry := range uc.network.channels.innerMap {
ch := entry.value.(*Channel)
channels = append(channels, ch.Name)
keys = append(keys, ch.Key)
}
for _, msg := range join(channels, keys) {
uc.SendMessage(msg)
}
2020-02-06 10:22:04 -08:00
}
2020-02-06 08:04:49 -08:00
case irc.RPL_MYINFO:
if err := parseMessageParams(msg, nil, &uc.serverName, nil, &uc.availableUserModes, nil); err != nil {
return err
}
case irc.RPL_ISUPPORT:
if err := parseMessageParams(msg, nil, nil); err != nil {
2020-02-07 03:36:02 -08:00
return err
2020-02-06 08:04:49 -08:00
}
2021-03-15 15:41:37 -07:00
var downstreamIsupport []string
for _, token := range msg.Params[1 : len(msg.Params)-1] {
parameter := token
2021-03-15 15:06:36 -07:00
var negate, hasValue bool
var value string
if strings.HasPrefix(token, "-") {
negate = true
token = token[1:]
2021-03-15 14:54:32 -07:00
} else if i := strings.IndexByte(token, '='); i >= 0 {
parameter = token[:i]
value = token[i+1:]
2021-03-15 15:06:36 -07:00
hasValue = true
}
2021-03-15 15:06:36 -07:00
if hasValue {
uc.isupport[parameter] = &value
} else if !negate {
uc.isupport[parameter] = nil
} else {
delete(uc.isupport, parameter)
}
2021-03-15 15:11:42 -07:00
var err error
switch parameter {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
case "CASEMAPPING":
casemap, ok := parseCasemappingToken(value)
if !ok {
casemap = casemapRFC1459
}
uc.network.updateCasemapping(casemap)
uc.nickCM = uc.network.casemap(uc.nick)
uc.casemapIsSet = true
2021-03-15 15:11:42 -07:00
case "CHANMODES":
if !negate {
err = uc.handleChanModes(value)
} else {
uc.availableChannelModes = stdChannelModes
}
case "CHANTYPES":
if !negate {
uc.availableChannelTypes = value
2021-03-15 15:11:42 -07:00
} else {
uc.availableChannelTypes = stdChannelTypes
}
case "PREFIX":
if !negate {
err = uc.handleMemberships(value)
} else {
uc.availableMemberships = stdMemberships
}
}
2021-03-15 15:11:42 -07:00
if err != nil {
return err
}
2021-03-15 15:41:37 -07:00
if passthroughIsupport[parameter] {
downstreamIsupport = append(downstreamIsupport, token)
}
2020-02-06 08:04:49 -08:00
}
2021-03-15 15:41:37 -07:00
uc.forEachDownstream(func(dc *downstreamConn) {
if dc.network == nil {
return
}
msgs := generateIsupport(dc.srv.prefix(), dc.nick, downstreamIsupport)
for _, msg := range msgs {
dc.SendMessage(msg)
}
})
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
case irc.ERR_NOMOTD, irc.RPL_ENDOFMOTD:
if !uc.casemapIsSet {
// upstream did not send any CASEMAPPING token, thus
// we assume it implements the old RFCs with rfc1459.
uc.casemapIsSet = true
uc.network.updateCasemapping(casemapRFC1459)
uc.nickCM = uc.network.casemap(uc.nick)
}
2020-03-22 19:18:16 -07:00
case "BATCH":
var tag string
if err := parseMessageParams(msg, &tag); err != nil {
return err
}
if strings.HasPrefix(tag, "+") {
tag = tag[1:]
if _, ok := uc.batches[tag]; ok {
return fmt.Errorf("unexpected BATCH reference tag: batch was already defined: %q", tag)
}
var batchType string
if err := parseMessageParams(msg, nil, &batchType); err != nil {
return err
}
label := label
if label == "" && msgBatch != nil {
label = msgBatch.Label
}
2020-03-22 19:18:16 -07:00
uc.batches[tag] = batch{
Type: batchType,
Params: msg.Params[2:],
Outer: msgBatch,
Label: label,
2020-03-22 19:18:16 -07:00
}
} else if strings.HasPrefix(tag, "-") {
tag = tag[1:]
if _, ok := uc.batches[tag]; !ok {
return fmt.Errorf("unknown BATCH reference tag: %q", tag)
}
delete(uc.batches, tag)
} else {
return fmt.Errorf("unexpected BATCH reference tag: missing +/- prefix: %q", tag)
}
2020-02-07 03:19:42 -08:00
case "NICK":
2020-03-06 09:51:11 -08:00
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
2020-02-07 03:36:02 -08:00
var newNick string
if err := parseMessageParams(msg, &newNick); err != nil {
return err
2020-02-07 03:19:42 -08:00
}
me := false
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(msg.Prefix.Name) {
uc.logger.Printf("changed nick from %q to %q", uc.nick, newNick)
me = true
uc.nick = newNick
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uc.nickCM = uc.network.casemap(uc.nick)
2020-02-07 03:19:42 -08:00
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
for _, entry := range uc.channels.innerMap {
ch := entry.value.(*upstreamChannel)
memberships := ch.Members.Value(msg.Prefix.Name)
if memberships != nil {
ch.Members.Delete(msg.Prefix.Name)
ch.Members.SetValue(newNick, memberships)
uc.appendLog(ch.Name, msg)
2020-02-07 03:19:42 -08:00
}
}
if !me {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(dc.marshalMessage(msg, uc.network))
})
} else {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.updateNick()
})
}
2020-02-06 10:22:04 -08:00
case "JOIN":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
2020-02-07 03:36:02 -08:00
var channels string
if err := parseMessageParams(msg, &channels); err != nil {
return err
2020-02-06 10:22:04 -08:00
}
2020-02-07 03:36:02 -08:00
for _, ch := range strings.Split(channels, ",") {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(msg.Prefix.Name) {
uc.logger.Printf("joined channel %q", ch)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
members := membershipsCasemapMap{newCasemapMap(0)}
members.casemap = uc.network.casemap
uc.channels.SetValue(ch, &upstreamChannel{
Name: ch,
conn: uc,
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
Members: members,
})
uc.updateChannelAutoDetach(ch)
uc.SendMessage(&irc.Message{
Command: "MODE",
Params: []string{ch},
})
} else {
ch, err := uc.getChannel(ch)
if err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch.Members.SetValue(msg.Prefix.Name, &memberships{})
2020-02-06 10:22:04 -08:00
}
chMsg := msg.Copy()
chMsg.Params[0] = ch
uc.produce(ch, chMsg, nil)
}
case "PART":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
2020-02-07 03:36:02 -08:00
var channels string
if err := parseMessageParams(msg, &channels); err != nil {
return err
}
2020-02-07 03:36:02 -08:00
for _, ch := range strings.Split(channels, ",") {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(msg.Prefix.Name) {
uc.logger.Printf("parted channel %q", ch)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch := uc.channels.Value(ch)
if uch != nil {
uc.channels.Delete(ch)
uch.updateAutoDetach(0)
}
} else {
ch, err := uc.getChannel(ch)
if err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch.Members.Delete(msg.Prefix.Name)
}
chMsg := msg.Copy()
chMsg.Params[0] = ch
uc.produce(ch, chMsg, nil)
}
case "KICK":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
var channel, user string
if err := parseMessageParams(msg, &channel, &user); err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(user) {
uc.logger.Printf("kicked from channel %q by %s", channel, msg.Prefix.Name)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uc.channels.Delete(channel)
} else {
ch, err := uc.getChannel(channel)
if err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch.Members.Delete(user)
}
uc.produce(channel, msg, nil)
2020-03-06 09:51:11 -08:00
case "QUIT":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
if uc.isOurNick(msg.Prefix.Name) {
2020-03-06 09:51:11 -08:00
uc.logger.Printf("quit")
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
for _, entry := range uc.channels.innerMap {
ch := entry.value.(*upstreamChannel)
if ch.Members.Has(msg.Prefix.Name) {
ch.Members.Delete(msg.Prefix.Name)
uc.appendLog(ch.Name, msg)
}
2020-03-06 09:51:11 -08:00
}
if msg.Prefix.Name != uc.nick {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(dc.marshalMessage(msg, uc.network))
2020-03-06 09:51:11 -08:00
})
}
2020-02-06 10:22:04 -08:00
case irc.RPL_TOPIC, irc.RPL_NOTOPIC:
2020-02-07 03:36:02 -08:00
var name, topic string
if err := parseMessageParams(msg, nil, &name, &topic); err != nil {
return err
2020-02-06 10:22:04 -08:00
}
ch, err := uc.getChannel(name)
2020-02-06 10:22:04 -08:00
if err != nil {
return err
}
if msg.Command == irc.RPL_TOPIC {
2020-02-07 03:36:02 -08:00
ch.Topic = topic
2020-02-06 10:22:04 -08:00
} else {
ch.Topic = ""
}
case "TOPIC":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
2020-02-07 03:36:02 -08:00
var name string
if err := parseMessageParams(msg, &name); err != nil {
2020-02-07 03:36:02 -08:00
return err
2020-02-06 10:22:04 -08:00
}
ch, err := uc.getChannel(name)
2020-02-06 10:22:04 -08:00
if err != nil {
return err
}
if len(msg.Params) > 1 {
ch.Topic = msg.Params[1]
ch.TopicWho = msg.Prefix.Copy()
ch.TopicTime = time.Now() // TODO use msg.Tags["time"]
2020-02-06 10:22:04 -08:00
} else {
ch.Topic = ""
}
uc.produce(ch.Name, msg, nil)
case "MODE":
var name, modeStr string
if err := parseMessageParams(msg, &name, &modeStr); err != nil {
return err
}
if !uc.isChannel(name) { // user mode change
if name != uc.nick {
return fmt.Errorf("received MODE message for unknown nick %q", name)
}
return uc.modes.Apply(modeStr)
// TODO: notify downstreams about user mode change?
} else { // channel mode change
ch, err := uc.getChannel(name)
if err != nil {
return err
}
needMarshaling, err := applyChannelModes(ch, modeStr, msg.Params[2:])
if err != nil {
return err
}
uc.appendLog(ch.Name, msg)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
c := uc.network.channels.Value(name)
if c == nil || !c.Detached {
uc.forEachDownstream(func(dc *downstreamConn) {
params := make([]string, len(msg.Params))
params[0] = dc.marshalEntity(uc.network, name)
params[1] = modeStr
copy(params[2:], msg.Params[2:])
for i, modeParam := range params[2:] {
if _, ok := needMarshaling[i]; ok {
params[2+i] = dc.marshalEntity(uc.network, modeParam)
}
}
dc.SendMessage(&irc.Message{
Prefix: dc.marshalUserPrefix(uc.network, msg.Prefix),
Command: "MODE",
Params: params,
})
})
}
}
case irc.RPL_UMODEIS:
if err := parseMessageParams(msg, nil); err != nil {
return err
}
modeStr := ""
if len(msg.Params) > 1 {
modeStr = msg.Params[1]
}
uc.modes = ""
if err := uc.modes.Apply(modeStr); err != nil {
return err
}
// TODO: send RPL_UMODEIS to downstream connections when applicable
case irc.RPL_CHANNELMODEIS:
var channel string
if err := parseMessageParams(msg, nil, &channel); err != nil {
return err
}
modeStr := ""
if len(msg.Params) > 2 {
modeStr = msg.Params[2]
}
ch, err := uc.getChannel(channel)
if err != nil {
return err
}
firstMode := ch.modes == nil
ch.modes = make(map[byte]string)
if _, err := applyChannelModes(ch, modeStr, msg.Params[3:]); err != nil {
return err
}
if firstMode {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
c := uc.network.channels.Value(channel)
if c == nil || !c.Detached {
modeStr, modeParams := ch.modes.Format()
uc.forEachDownstream(func(dc *downstreamConn) {
params := []string{dc.nick, dc.marshalEntity(uc.network, channel), modeStr}
params = append(params, modeParams...)
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_CHANNELMODEIS,
Params: params,
})
})
}
}
2020-03-25 21:51:47 -07:00
case rpl_creationtime:
var channel, creationTime string
if err := parseMessageParams(msg, nil, &channel, &creationTime); err != nil {
return err
}
ch, err := uc.getChannel(channel)
if err != nil {
return err
}
firstCreationTime := ch.creationTime == ""
ch.creationTime = creationTime
if firstCreationTime {
uc.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: rpl_creationtime,
Params: []string{dc.nick, dc.marshalEntity(uc.network, ch.Name), creationTime},
2020-03-25 21:51:47 -07:00
})
})
}
2020-02-06 10:22:04 -08:00
case rpl_topicwhotime:
2020-02-07 03:36:02 -08:00
var name, who, timeStr string
if err := parseMessageParams(msg, nil, &name, &who, &timeStr); err != nil {
return err
2020-02-06 10:22:04 -08:00
}
ch, err := uc.getChannel(name)
2020-02-06 10:22:04 -08:00
if err != nil {
return err
}
firstTopicWhoTime := ch.TopicWho == nil
ch.TopicWho = irc.ParsePrefix(who)
2020-02-07 03:36:02 -08:00
sec, err := strconv.ParseInt(timeStr, 10, 64)
2020-02-06 10:22:04 -08:00
if err != nil {
return fmt.Errorf("failed to parse topic time: %v", err)
}
ch.TopicTime = time.Unix(sec, 0)
if firstTopicWhoTime {
uc.forEachDownstream(func(dc *downstreamConn) {
topicWho := dc.marshalUserPrefix(uc.network, ch.TopicWho)
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: rpl_topicwhotime,
Params: []string{
dc.nick,
dc.marshalEntity(uc.network, ch.Name),
topicWho.String(),
timeStr,
},
})
})
}
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
case irc.RPL_LIST:
var channel, clients, topic string
if err := parseMessageParams(msg, nil, &channel, &clients, &topic); err != nil {
return err
}
pl := uc.getPendingLIST()
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
if pl == nil {
return fmt.Errorf("unexpected RPL_LIST: no matching pending LIST")
}
uc.forEachDownstreamByID(pl.downstreamID, func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_LIST,
Params: []string{dc.nick, dc.marshalEntity(uc.network, channel), clients, topic},
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
})
})
case irc.RPL_LISTEND:
ok := uc.endPendingLISTs(false)
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
if !ok {
return fmt.Errorf("unexpected RPL_LISTEND: no matching pending LIST")
}
2020-02-06 10:22:04 -08:00
case irc.RPL_NAMREPLY:
2020-02-07 03:36:02 -08:00
var name, statusStr, members string
if err := parseMessageParams(msg, nil, &statusStr, &name, &members); err != nil {
return err
2020-02-06 10:22:04 -08:00
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := uc.channels.Value(name)
if ch == nil {
// NAMES on a channel we have not joined, forward to downstream
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
channel := dc.marshalEntity(uc.network, name)
members := splitSpace(members)
for i, member := range members {
memberships, nick := uc.parseMembershipPrefix(member)
members[i] = memberships.Format(dc) + dc.marshalEntity(uc.network, nick)
}
memberStr := strings.Join(members, " ")
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_NAMREPLY,
Params: []string{dc.nick, statusStr, channel, memberStr},
})
})
return nil
2020-02-06 10:22:04 -08:00
}
2020-02-07 03:36:02 -08:00
status, err := parseChannelStatus(statusStr)
2020-02-06 10:22:04 -08:00
if err != nil {
return err
}
ch.Status = status
for _, s := range splitSpace(members) {
memberships, nick := uc.parseMembershipPrefix(s)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch.Members.SetValue(nick, memberships)
2020-02-06 10:22:04 -08:00
}
case irc.RPL_ENDOFNAMES:
2020-02-07 03:36:02 -08:00
var name string
if err := parseMessageParams(msg, nil, &name); err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := uc.channels.Value(name)
if ch == nil {
// NAMES on a channel we have not joined, forward to downstream
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
channel := dc.marshalEntity(uc.network, name)
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_ENDOFNAMES,
Params: []string{dc.nick, channel, "End of /NAMES list"},
})
})
return nil
}
if ch.complete {
return fmt.Errorf("received unexpected RPL_ENDOFNAMES")
}
ch.complete = true
2020-02-06 13:19:31 -08:00
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
c := uc.network.channels.Value(name)
if c == nil || !c.Detached {
uc.forEachDownstream(func(dc *downstreamConn) {
forwardChannel(dc, ch)
})
}
2020-03-19 16:23:19 -07:00
case irc.RPL_WHOREPLY:
var channel, username, host, server, nick, mode, trailing string
if err := parseMessageParams(msg, nil, &channel, &username, &host, &server, &nick, &mode, &trailing); err != nil {
return err
}
parts := strings.SplitN(trailing, " ", 2)
if len(parts) != 2 {
return fmt.Errorf("received malformed RPL_WHOREPLY: wrong trailing parameter: %s", trailing)
}
realname := parts[1]
hops, err := strconv.Atoi(parts[0])
if err != nil {
return fmt.Errorf("received malformed RPL_WHOREPLY: wrong hop count: %s", parts[0])
}
hops++
trailing = strconv.Itoa(hops) + " " + realname
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
2020-03-19 16:23:19 -07:00
channel := channel
if channel != "*" {
channel = dc.marshalEntity(uc.network, channel)
2020-03-19 16:23:19 -07:00
}
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 16:23:19 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOREPLY,
Params: []string{dc.nick, channel, username, host, server, nick, mode, trailing},
})
})
case irc.RPL_ENDOFWHO:
var name string
if err := parseMessageParams(msg, nil, &name); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
2020-03-19 16:23:19 -07:00
name := name
if name != "*" {
// TODO: support WHO masks
name = dc.marshalEntity(uc.network, name)
2020-03-19 16:23:19 -07:00
}
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_ENDOFWHO,
Params: []string{dc.nick, name, "End of /WHO list"},
2020-03-19 18:15:23 -07:00
})
})
case irc.RPL_WHOISUSER:
var nick, username, host, realname string
if err := parseMessageParams(msg, nil, &nick, &username, &host, nil, &realname); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOISUSER,
Params: []string{dc.nick, nick, username, host, "*", realname},
})
})
case irc.RPL_WHOISSERVER:
var nick, server, serverInfo string
if err := parseMessageParams(msg, nil, &nick, &server, &serverInfo); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOISSERVER,
Params: []string{dc.nick, nick, server, serverInfo},
})
})
case irc.RPL_WHOISOPERATOR:
var nick string
if err := parseMessageParams(msg, nil, &nick); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOISOPERATOR,
Params: []string{dc.nick, nick, "is an IRC operator"},
})
})
case irc.RPL_WHOISIDLE:
var nick string
if err := parseMessageParams(msg, nil, &nick, nil); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
params := []string{dc.nick, nick}
params = append(params, msg.Params[2:]...)
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOISIDLE,
Params: params,
})
})
case irc.RPL_WHOISCHANNELS:
var nick, channelList string
if err := parseMessageParams(msg, nil, &nick, &channelList); err != nil {
return err
}
channels := splitSpace(channelList)
2020-03-19 18:15:23 -07:00
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
channelList := make([]string, len(channels))
for i, channel := range channels {
prefix, channel := uc.parseMembershipPrefix(channel)
channel = dc.marshalEntity(uc.network, channel)
channelList[i] = prefix.Format(dc) + channel
2020-03-19 18:15:23 -07:00
}
channels := strings.Join(channelList, " ")
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_WHOISCHANNELS,
Params: []string{dc.nick, nick, channels},
})
})
case irc.RPL_ENDOFWHOIS:
var nick string
if err := parseMessageParams(msg, nil, &nick); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
nick := dc.marshalEntity(uc.network, nick)
2020-03-19 18:15:23 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_ENDOFWHOIS,
Params: []string{dc.nick, nick, "End of /WHOIS list"},
2020-03-19 16:23:19 -07:00
})
})
2020-03-17 19:11:38 -07:00
case "INVITE":
var nick, channel string
2020-03-17 19:11:38 -07:00
if err := parseMessageParams(msg, &nick, &channel); err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
weAreInvited := uc.isOurNick(nick)
2020-03-17 19:11:38 -07:00
uc.forEachDownstream(func(dc *downstreamConn) {
if !weAreInvited && !dc.caps["invite-notify"] {
return
}
2020-03-17 19:11:38 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.marshalUserPrefix(uc.network, msg.Prefix),
2020-03-17 19:11:38 -07:00
Command: "INVITE",
Params: []string{dc.marshalEntity(uc.network, nick), dc.marshalEntity(uc.network, channel)},
2020-03-17 19:11:38 -07:00
})
})
2020-03-25 22:03:07 -07:00
case irc.RPL_INVITING:
var nick, channel string
if err := parseMessageParams(msg, nil, &nick, &channel); err != nil {
2020-03-25 22:03:07 -07:00
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_INVITING,
Params: []string{dc.nick, dc.marshalEntity(uc.network, nick), dc.marshalEntity(uc.network, channel)},
2020-03-25 22:03:07 -07:00
})
})
2020-04-29 05:53:48 -07:00
case irc.RPL_AWAY:
var nick, reason string
if err := parseMessageParams(msg, nil, &nick, &reason); err != nil {
return err
}
uc.forEachDownstream(func(dc *downstreamConn) {
2020-04-29 05:53:48 -07:00
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: irc.RPL_AWAY,
Params: []string{dc.nick, dc.marshalEntity(uc.network, nick), reason},
})
})
case "AWAY":
if msg.Prefix == nil {
return fmt.Errorf("expected a prefix")
}
uc.forEachDownstream(func(dc *downstreamConn) {
if !dc.caps["away-notify"] {
return
}
dc.SendMessage(&irc.Message{
Prefix: dc.marshalUserPrefix(uc.network, msg.Prefix),
Command: "AWAY",
Params: msg.Params,
})
})
case irc.RPL_BANLIST, irc.RPL_INVITELIST, irc.RPL_EXCEPTLIST:
var channel, mask string
if err := parseMessageParams(msg, nil, &channel, &mask); err != nil {
return err
}
var addNick, addTime string
if len(msg.Params) >= 5 {
addNick = msg.Params[3]
addTime = msg.Params[4]
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
channel := dc.marshalEntity(uc.network, channel)
var params []string
if addNick != "" && addTime != "" {
addNick := dc.marshalEntity(uc.network, addNick)
params = []string{dc.nick, channel, mask, addNick, addTime}
} else {
params = []string{dc.nick, channel, mask}
}
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: msg.Command,
Params: params,
})
})
case irc.RPL_ENDOFBANLIST, irc.RPL_ENDOFINVITELIST, irc.RPL_ENDOFEXCEPTLIST:
var channel, trailing string
if err := parseMessageParams(msg, nil, &channel, &trailing); err != nil {
return err
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
upstreamChannel := dc.marshalEntity(uc.network, channel)
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: msg.Command,
Params: []string{dc.nick, upstreamChannel, trailing},
})
})
case irc.ERR_UNKNOWNCOMMAND, irc.RPL_TRYAGAIN:
var command, reason string
if err := parseMessageParams(msg, nil, &command, &reason); err != nil {
return err
}
if command == "LIST" {
ok := uc.endPendingLISTs(false)
if !ok {
return fmt.Errorf("unexpected response for LIST: %q: no matching pending LIST", msg.Command)
}
}
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: uc.srv.prefix(),
Command: msg.Command,
Params: []string{dc.nick, command, reason},
})
})
case "ACK":
// Ignore
case irc.RPL_NOWAWAY, irc.RPL_UNAWAY:
// Ignore
2020-02-06 08:04:49 -08:00
case irc.RPL_YOURHOST, irc.RPL_CREATED:
2020-02-06 07:39:09 -08:00
// Ignore
case irc.RPL_LUSERCLIENT, irc.RPL_LUSEROP, irc.RPL_LUSERUNKNOWN, irc.RPL_LUSERCHANNELS, irc.RPL_LUSERME:
// Ignore
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
case irc.RPL_MOTDSTART, irc.RPL_MOTD:
2020-02-06 07:39:09 -08:00
// Ignore
Add LIST support This commit adds support for downstream LIST messages from multiple concurrent downstreams to multiple concurrent upstreams, including support for multiple pending LIST requests from the same downstream. Because a unique RPL_LISTEND message must be sent to the requesting downstream, and that there might be multiple upstreams, each sending their own RPL_LISTEND, a cache of RPL_LISTEND replies of some sort is required to match RPL_LISTEND together in order to only send one back downstream. This commit adds a list of "pending LIST" structs, which each contain a map of all upstreams that yet need to send a RPL_LISTEND, and the corresponding LIST request associated with that response. This list of pending LISTs is sorted according to the order that the requesting downstreams sent the LIST messages in. Each pending set also stores the id of the requesting downstream, in order to only forward the replies to it and no other downstream. (This is important because LIST replies can typically amount to several thousands messages on large servers.) When a single downstream makes multiple LIST requests, only the first one will be immediately sent to the upstream servers. The next ones will be buffered until the first one is completed. Distinct downstreams can make concurrent LIST requests without any request buffering. Each RPL_LIST message is forwarded to the downstream of the first matching pending LIST struct. When an upstream sends an RPL_LISTEND message, the upstream is removed from the first matching pending LIST struct, but that message is not immediately forwarded downstream. If there are no remaining pending LIST requests in that struct is then empty, that means all upstreams have sent back all their RPL_LISTEND replies (which means they also sent all their RPL_LIST replies); so a unique RPL_LISTEND is sent to downstream and that pending LIST set is removed from the cache. Upstreams are removed from the pending LIST structs in two other cases: - when they are closed (to avoid stalling because of a disconnected upstream that will never reply to the LIST message): they are removed from all pending LIST structs - when they reply with an ERR_UNKNOWNCOMMAND or RPL_TRYAGAIN LIST reply, which is typically used when a user is not allowed to LIST because they just joined the server: they are removed from the first pending LIST struct, as if an RPL_LISTEND message was received
2020-03-25 18:40:30 -07:00
case irc.RPL_LISTSTART:
// Ignore
2020-02-06 07:39:09 -08:00
case rpl_localusers, rpl_globalusers:
// Ignore
case irc.RPL_STATSVLINE, rpl_statsping, irc.RPL_STATSBLINE, irc.RPL_STATSDLINE:
2020-02-06 07:39:09 -08:00
// Ignore
2020-08-13 06:30:41 -07:00
case "ERROR":
var text string
if err := parseMessageParams(msg, &text); err != nil {
return err
}
return fmt.Errorf("fatal server error: %v", text)
case irc.ERR_PASSWDMISMATCH, irc.ERR_ERRONEUSNICKNAME, irc.ERR_NICKNAMEINUSE, irc.ERR_NICKCOLLISION, irc.ERR_UNAVAILRESOURCE, irc.ERR_NOPERMFORHOST, irc.ERR_YOUREBANNEDCREEP:
if !uc.registered {
text := msg.Params[len(msg.Params)-1]
return registrationError(text)
}
fallthrough
default:
uc.logger.Printf("unhandled message: %v", msg)
uc.forEachDownstreamByID(downstreamID, func(dc *downstreamConn) {
// best effort marshaling for unknown messages, replies and errors:
// most numerics start with the user nick, marshal it if that's the case
// otherwise, conservately keep the params without marshaling
params := msg.Params
if _, err := strconv.Atoi(msg.Command); err == nil { // numeric
if len(msg.Params) > 0 && isOurNick(uc.network, msg.Params[0]) {
params[0] = dc.nick
}
}
dc.SendMessage(&irc.Message{
Prefix: uc.srv.prefix(),
Command: msg.Command,
Params: params,
})
})
}
2020-02-06 07:39:09 -08:00
return nil
}
func (uc *upstreamConn) handleDetachedMessage(sender string, text string, ch *Channel) {
highlight := sender != uc.nick && isHighlight(text, uc.nick)
if ch.RelayDetached == FilterMessage || ((ch.RelayDetached == FilterHighlight || ch.RelayDetached == FilterDefault) && highlight) {
uc.forEachDownstream(func(dc *downstreamConn) {
if highlight {
sendServiceNOTICE(dc, fmt.Sprintf("highlight in %v: <%v> %v", dc.marshalEntity(uc.network, ch.Name), sender, text))
} else {
sendServiceNOTICE(dc, fmt.Sprintf("message in %v: <%v> %v", dc.marshalEntity(uc.network, ch.Name), sender, text))
}
})
}
if ch.ReattachOn == FilterMessage || (ch.ReattachOn == FilterHighlight && highlight) {
uc.network.attach(ch)
if err := uc.srv.db.StoreChannel(uc.network.ID, ch); err != nil {
uc.logger.Printf("failed to update channel %q: %v", ch.Name, err)
}
}
}
func (uc *upstreamConn) handleChanModes(s string) error {
parts := strings.SplitN(s, ",", 5)
if len(parts) < 4 {
return fmt.Errorf("malformed ISUPPORT CHANMODES value: %v", s)
}
modes := make(map[byte]channelModeType)
for i, mt := range []channelModeType{modeTypeA, modeTypeB, modeTypeC, modeTypeD} {
for j := 0; j < len(parts[i]); j++ {
mode := parts[i][j]
modes[mode] = mt
}
}
uc.availableChannelModes = modes
return nil
}
func (uc *upstreamConn) handleMemberships(s string) error {
if s == "" {
uc.availableMemberships = nil
return nil
}
if s[0] != '(' {
return fmt.Errorf("malformed ISUPPORT PREFIX value: %v", s)
}
sep := strings.IndexByte(s, ')')
if sep < 0 || len(s) != sep*2 {
return fmt.Errorf("malformed ISUPPORT PREFIX value: %v", s)
}
memberships := make([]membership, len(s)/2-1)
for i := range memberships {
memberships[i] = membership{
Mode: s[i+1],
Prefix: s[sep+i+1],
}
}
uc.availableMemberships = memberships
return nil
}
2020-04-30 06:27:41 -07:00
func (uc *upstreamConn) handleSupportedCaps(capsStr string) {
caps := strings.Fields(capsStr)
for _, s := range caps {
kv := strings.SplitN(s, "=", 2)
k := strings.ToLower(kv[0])
var v string
if len(kv) == 2 {
v = kv[1]
}
uc.supportedCaps[k] = v
}
}
func (uc *upstreamConn) requestCaps() {
var requestCaps []string
2020-04-30 07:10:39 -07:00
for c := range permanentUpstreamCaps {
2020-04-30 06:27:41 -07:00
if _, ok := uc.supportedCaps[c]; ok && !uc.caps[c] {
requestCaps = append(requestCaps, c)
}
}
if uc.requestSASL() && !uc.caps["sasl"] {
requestCaps = append(requestCaps, "sasl")
}
2020-04-30 07:10:39 -07:00
if len(requestCaps) == 0 {
return
}
uc.SendMessage(&irc.Message{
Command: "CAP",
Params: []string{"REQ", strings.Join(requestCaps, " ")},
})
}
func (uc *upstreamConn) requestSASL() bool {
if uc.network.SASL.Mechanism == "" {
return false
}
v, ok := uc.supportedCaps["sasl"]
if !ok {
return false
}
if v != "" {
mechanisms := strings.Split(v, ",")
found := false
for _, mech := range mechanisms {
if strings.EqualFold(mech, uc.network.SASL.Mechanism) {
found = true
break
}
}
if !found {
return false
}
}
return true
}
func (uc *upstreamConn) handleCapAck(name string, ok bool) error {
uc.caps[name] = ok
switch name {
case "sasl":
if !ok {
uc.logger.Printf("server refused to acknowledge the SASL capability")
return nil
}
auth := &uc.network.SASL
switch auth.Mechanism {
case "PLAIN":
uc.logger.Printf("starting SASL PLAIN authentication with username %q", auth.Plain.Username)
uc.saslClient = sasl.NewPlainClient("", auth.Plain.Username, auth.Plain.Password)
case "EXTERNAL":
uc.logger.Printf("starting SASL EXTERNAL authentication")
uc.saslClient = sasl.NewExternalClient("")
2020-04-30 07:10:39 -07:00
default:
return fmt.Errorf("unsupported SASL mechanism %q", name)
}
2020-04-30 06:27:41 -07:00
uc.SendMessage(&irc.Message{
2020-04-30 07:10:39 -07:00
Command: "AUTHENTICATE",
Params: []string{auth.Mechanism},
2020-04-30 06:27:41 -07:00
})
2020-04-30 07:10:39 -07:00
default:
if permanentUpstreamCaps[name] {
break
}
uc.logger.Printf("received CAP ACK/NAK for a cap we don't support: %v", name)
2020-04-30 06:27:41 -07:00
}
2020-04-30 07:10:39 -07:00
return nil
2020-04-30 06:27:41 -07:00
}
func splitSpace(s string) []string {
return strings.FieldsFunc(s, func(r rune) bool {
return r == ' '
})
}
func (uc *upstreamConn) register() {
uc.nick = uc.network.Nick
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uc.nickCM = uc.network.casemap(uc.nick)
uc.username = uc.network.GetUsername()
uc.realname = uc.network.GetRealname()
2020-03-13 03:26:43 -07:00
uc.SendMessage(&irc.Message{
Command: "CAP",
Params: []string{"LS", "302"},
})
2020-03-13 04:06:02 -07:00
if uc.network.Pass != "" {
uc.SendMessage(&irc.Message{
Command: "PASS",
Params: []string{uc.network.Pass},
})
}
uc.SendMessage(&irc.Message{
Command: "NICK",
Params: []string{uc.nick},
})
uc.SendMessage(&irc.Message{
Command: "USER",
Params: []string{uc.username, "0", "*", uc.realname},
})
2020-02-07 03:37:44 -08:00
}
2020-04-01 03:14:36 -07:00
func (uc *upstreamConn) runUntilRegistered() error {
for !uc.registered {
msg, err := uc.ReadMessage()
2020-04-01 03:14:36 -07:00
if err != nil {
return fmt.Errorf("failed to read message: %v", err)
}
if err := uc.handleMessage(msg); err != nil {
if _, ok := err.(registrationError); ok {
return err
} else {
msg.Tags = nil // prevent message tags from cluttering logs
return fmt.Errorf("failed to handle message %q: %v", msg, err)
}
2020-04-01 03:14:36 -07:00
}
}
for _, command := range uc.network.ConnectCommands {
m, err := irc.ParseMessage(command)
if err != nil {
uc.logger.Printf("failed to parse connect command %q: %v", command, err)
} else {
uc.SendMessage(m)
}
}
2020-04-01 03:14:36 -07:00
return nil
}
func (uc *upstreamConn) readMessages(ch chan<- event) error {
for {
msg, err := uc.ReadMessage()
if err == io.EOF {
break
} else if err != nil {
return fmt.Errorf("failed to read IRC command: %v", err)
}
ch <- eventUpstreamMessage{msg, uc}
}
return nil
}
func (uc *upstreamConn) SendMessage(msg *irc.Message) {
if !uc.caps["message-tags"] {
msg = msg.Copy()
msg.Tags = nil
}
uc.conn.SendMessage(msg)
}
func (uc *upstreamConn) SendMessageLabeled(downstreamID uint64, msg *irc.Message) {
if uc.caps["labeled-response"] {
if msg.Tags == nil {
msg.Tags = make(map[string]irc.TagValue)
}
msg.Tags["label"] = irc.TagValue(fmt.Sprintf("sd-%d-%d", downstreamID, uc.nextLabelID))
uc.nextLabelID++
}
uc.SendMessage(msg)
}
// appendLog appends a message to the log file.
//
// The internal message ID is returned. If the message isn't recorded in the
// log file, an empty string is returned.
func (uc *upstreamConn) appendLog(entity string, msg *irc.Message) (msgID string) {
if uc.user.msgStore == nil {
return ""
}
entityCM := uc.network.casemap(entity)
if entityCM == "nickserv" {
// The messages sent/received from NickServ may contain
// security-related information (like passwords). Don't store these.
return ""
}
if !uc.network.delivered.HasTarget(entity) {
// This is the first message we receive from this target. Save the last
// message ID in delivery receipts, so that we can send the new message
// in the backlog if an offline client reconnects.
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
lastID, err := uc.user.msgStore.LastMsgID(uc.network, entityCM, time.Now())
if err != nil {
uc.logger.Printf("failed to log message: failed to get last message ID: %v", err)
return ""
}
for clientName, _ := range uc.user.clientNames {
uc.network.delivered.StoreID(entity, clientName, lastID)
}
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
msgID, err := uc.user.msgStore.Append(uc.network, entityCM, msg)
if err != nil {
uc.logger.Printf("failed to log message: %v", err)
return ""
}
return msgID
}
// produce appends a message to the logs and forwards it to connected downstream
// connections.
//
// If origin is not nil and origin doesn't support echo-message, the message is
// forwarded to all connections except origin.
2020-04-06 12:42:55 -07:00
func (uc *upstreamConn) produce(target string, msg *irc.Message, origin *downstreamConn) {
var msgID string
2020-04-06 12:42:55 -07:00
if target != "" {
msgID = uc.appendLog(target, msg)
2020-04-06 12:42:55 -07:00
}
// Don't forward messages if it's a detached channel
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := uc.network.channels.Value(target)
if ch != nil && ch.Detached {
return
}
uc.forEachDownstream(func(dc *downstreamConn) {
if dc != origin || dc.caps["echo-message"] {
dc.sendMessageWithID(dc.marshalMessage(msg, uc.network), msgID)
} else {
dc.advanceMessageWithID(msg, msgID)
}
})
}
func (uc *upstreamConn) updateAway() {
away := true
uc.forEachDownstream(func(*downstreamConn) {
away = false
})
if away == uc.away {
return
}
if away {
uc.SendMessage(&irc.Message{
Command: "AWAY",
Params: []string{"Auto away"},
})
} else {
uc.SendMessage(&irc.Message{
Command: "AWAY",
})
}
uc.away = away
}
func (uc *upstreamConn) updateChannelAutoDetach(name string) {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch := uc.channels.Value(name)
if uch == nil {
return
}
ch := uc.network.channels.Value(name)
if ch == nil || ch.Detached {
return
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch.updateAutoDetach(ch.DetachAfter)
}