thug/Code/Core/Math/geometry.cpp
2016-02-14 08:39:12 +11:00

563 lines
17 KiB
C++

/*****************************************************************************
** **
** Neversoft Entertainment **
** **
** Copyright (C) 1999 - All Rights Reserved **
** **
******************************************************************************
** **
** Project: Core Library **
** **
** Module: Geometry (MTH) **
** **
** File name: Geometry.cpp **
** **
** Created by: 11/14/00 - Mick **
** **
** Description: Math **
// This module handles the representation and manipulation of line segements
// and planes
//
// a line segment (Mth::Line) is defined by two points, m_start and m_end
//
// a plane is defined by a point and a normal
** **
*****************************************************************************/
/*****************************************************************************
** Includes **
*****************************************************************************/
#include <core/defines.h>
#include <core/math.h>
#include <core/math/geometry.h>
#include <gfx/debuggfx.h>
/*****************************************************************************
** DBG Information **
*****************************************************************************/
namespace Mth
{
/*****************************************************************************
** DBG Information **
*****************************************************************************/
//
/*****************************************************************************
** Externals **
*****************************************************************************/
/*****************************************************************************
** Defines **
*****************************************************************************/
/*****************************************************************************
** Private Types **
*****************************************************************************/
/*****************************************************************************
** Private Data **
*****************************************************************************/
/*****************************************************************************
** Public Data **
*****************************************************************************/
/*****************************************************************************
** Private Prototypes **
*****************************************************************************/
/*****************************************************************************
** Private Functions **
*****************************************************************************/
/*****************************************************************************
** Public Functions **
*****************************************************************************/
Line::Line()
{
}
Line::Line ( const Vector &start, const Vector &end )
{
m_start = start;
m_end = end;
}
Plane::Plane()
{
}
Plane::Plane (const Vector &point, const Vector &normal)
{
m_point = point;
m_normal = normal;
}
Rectangle::Rectangle()
{
}
Rectangle::Rectangle ( const Vector& corner, const Vector& first_edge, const Vector& second_edge )
{
m_corner = corner;
m_first_edge = first_edge;
m_second_edge = second_edge;
}
/*
Calculate the line segment PaPb that is the shortest route between
two lines P1P2 and P3P4. Calculate also the values of mua and mub where
Pa = P1 + mua (P2 - P1)
Pb = P3 + mub (P4 - P3)
Return FALSE if no solution exists.
original algorithm from http://www.swin.edu.au/astronomy/pbourke/geometry/lineline3d/
note that I (Mick) modified it to clamp the points to within the line segments
if you remove the "Clamp" calls below, then the lines will be assumed to be
of infinite length
*/
#define EPS 0.00001f
bool LineLineIntersect( Line & l1, Line & l2, Vector *pa, Vector *pb, float *mua, float *mub, bool clamp )
{
Vector &p1 = l1.m_start;
Vector &p2 = l1.m_end;
Vector &p3 = l2.m_start;
Vector &p4 = l2.m_end;
Vector p13,p43,p21;
float d1343,d4321,d1321,d4343,d2121;
float numer,denom;
p13 = p1 - p3;
p43 = p4 - p3;
if (Abs(p43[X]) < EPS && Abs(p43[Y]) < EPS && Abs(p43[Z]) < EPS)
return(false);
p21 = p2 - p1;
if (Abs(p21[X]) < EPS && Abs(p21[Y]) < EPS && Abs(p21[Z]) < EPS)
return(false);
d1343 = DotProduct(p13,p43);
d4321 = DotProduct(p43,p21);
d1321 = DotProduct(p13,p21);
d4343 = DotProduct(p43,p43);
d2121 = DotProduct(p21,p21);
denom = d2121 * d4343 - d4321 * d4321;
if (Abs(denom) < EPS)
return(false);
numer = d1343 * d4321 - d1321 * d4343;
*mua = numer / denom;
if( clamp )
{
*mua = Clamp(*mua,0.0f,1.0f);
}
*mub = (d1343 + d4321 * (*mua)) / d4343;
if( clamp )
{
*mub = Clamp(*mub,0.0f,1.0f);
}
*pa = p1 + (*mua * p21);
*pb = p3 + (*mub * p43);
return(true);
}
/******************************************************************/
/* */
/* */
/******************************************************************/
CBBox::CBBox()
{
Reset();
}
CBBox::CBBox(const Vector &point)
{
Set(point, point);
}
CBBox::CBBox(const Vector &min, const Vector &max)
{
Set(min, max);
}
void CBBox::AddPoint(const Vector &point)
{
// Adjust min/max points
if (point[X] < m_min[X])
m_min[X] = point[X];
if (point[Y] < m_min[Y])
m_min[Y] = point[Y];
if (point[Z] < m_min[Z])
m_min[Z] = point[Z];
if (point[X] > m_max[X])
m_max[X] = point[X];
if (point[Y] > m_max[Y])
m_max[Y] = point[Y];
if (point[Z] > m_max[Z])
m_max[Z] = point[Z];
}
// Returns number of axes within and flags for which ones
int CBBox::WithinAxes(const Vector &point, uint32 &axis_flags) const
{
int number_of_axes = 0;
axis_flags = 0;
if ((point[X] >= m_min[X]) && (point[X] <= m_max[X]))
{
number_of_axes++;
axis_flags |= 1 << X;
}
if ((point[Y] >= m_min[Y]) && (point[Y] <= m_max[Y]))
{
number_of_axes++;
axis_flags |= 1 << Y;
}
if ((point[Z] >= m_min[Z]) && (point[Z] <= m_max[Z]))
{
number_of_axes++;
axis_flags |= 1 << Z;
}
return number_of_axes;
}
void CBBox::DebugRender(uint32 rgba, int frames) const
{
// Min YZ square
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_min[Y],m_min[Z]),Mth::Vector(m_min[X],m_min[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_min[Y],m_max[Z]),Mth::Vector(m_min[X],m_max[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_max[Y],m_max[Z]),Mth::Vector(m_min[X],m_max[Y],m_min[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_max[Y],m_min[Z]),Mth::Vector(m_min[X],m_min[Y],m_min[Z]),rgba,rgba,frames);
// Max YZ square
Gfx::AddDebugLine(Mth::Vector(m_max[X],m_min[Y],m_min[Z]),Mth::Vector(m_max[X],m_min[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_max[X],m_min[Y],m_max[Z]),Mth::Vector(m_max[X],m_max[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_max[X],m_max[Y],m_max[Z]),Mth::Vector(m_max[X],m_max[Y],m_min[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_max[X],m_max[Y],m_min[Z]),Mth::Vector(m_max[X],m_min[Y],m_min[Z]),rgba,rgba,frames);
// lines joining corners
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_min[Y],m_min[Z]),Mth::Vector(m_max[X],m_min[Y],m_min[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_min[Y],m_max[Z]),Mth::Vector(m_max[X],m_min[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_max[Y],m_max[Z]),Mth::Vector(m_max[X],m_max[Y],m_max[Z]),rgba,rgba,frames);
Gfx::AddDebugLine(Mth::Vector(m_min[X],m_max[Y],m_min[Z]),Mth::Vector(m_max[X],m_max[Y],m_min[Z]),rgba,rgba,frames);
}
void CBBox::DebugRender(const Mth::Matrix & transform, uint32 rgba, int frames) const
{
uint32 rgba_min = 0xFF000080;
uint32 rgba_max = 0x0000FF80;
Mth::Vector min_yz_1(m_min[X], m_min[Y], m_min[Z]);
Mth::Vector min_yz_2(m_min[X], m_min[Y], m_max[Z]);
Mth::Vector min_yz_3(m_min[X], m_max[Y], m_max[Z]);
Mth::Vector min_yz_4(m_min[X], m_max[Y], m_min[Z]);
Mth::Vector max_yz_1(m_max[X], m_min[Y], m_min[Z]);
Mth::Vector max_yz_2(m_max[X], m_min[Y], m_max[Z]);
Mth::Vector max_yz_3(m_max[X], m_max[Y], m_max[Z]);
Mth::Vector max_yz_4(m_max[X], m_max[Y], m_min[Z]);
// Transform
min_yz_1 = transform.Transform(min_yz_1);
min_yz_2 = transform.Transform(min_yz_2);
min_yz_3 = transform.Transform(min_yz_3);
min_yz_4 = transform.Transform(min_yz_4);
max_yz_1 = transform.Transform(max_yz_1);
max_yz_2 = transform.Transform(max_yz_2);
max_yz_3 = transform.Transform(max_yz_3);
max_yz_4 = transform.Transform(max_yz_4);
// Min YZ square
Gfx::AddDebugLine(min_yz_1, min_yz_2,rgba_min,rgba_min,frames);
Gfx::AddDebugLine(min_yz_2, min_yz_3,rgba_min,rgba_min,frames);
Gfx::AddDebugLine(min_yz_3, min_yz_4,rgba_min,rgba_min,frames);
Gfx::AddDebugLine(min_yz_4, min_yz_1,rgba_min,rgba_min,frames);
// Max YZ square
Gfx::AddDebugLine(max_yz_1, max_yz_2,rgba_max,rgba_max,frames);
Gfx::AddDebugLine(max_yz_2, max_yz_3,rgba_max,rgba_max,frames);
Gfx::AddDebugLine(max_yz_3, max_yz_4,rgba_max,rgba_max,frames);
Gfx::AddDebugLine(max_yz_4, max_yz_1,rgba_max,rgba_max,frames);
// lines joining corners
Gfx::AddDebugLine(min_yz_1, max_yz_1,rgba,rgba,frames);
Gfx::AddDebugLine(min_yz_2, max_yz_2,rgba,rgba,frames);
Gfx::AddDebugLine(min_yz_3, max_yz_3,rgba,rgba,frames);
Gfx::AddDebugLine(min_yz_4, max_yz_4,rgba,rgba,frames);
}
bool CBBox::LineIntersect( const Mth::Line &line, Mth::Vector &point, Mth::Vector &normal ) const
{
bool start_point_within = Within(line.m_start);
bool end_point_within = Within(line.m_end);
// Doesn't intersect side if both points within
if (start_point_within && end_point_within)
{
return false;
}
// Trivial rejection.
if ((line.m_start[Y] > m_max[Y]) && (line.m_end[Y] > m_max[Y])) return false;
if ((line.m_start[Y] < m_min[Y]) && (line.m_end[Y] < m_min[Y])) return false;
if ((line.m_start[X] > m_max[X]) && (line.m_end[X] > m_max[X])) return false;
if ((line.m_start[X] < m_min[X]) && (line.m_end[X] < m_min[X])) return false;
if ((line.m_start[Z] > m_max[Z]) && (line.m_end[Z] > m_max[Z])) return false;
if ((line.m_start[Z] < m_min[Z]) && (line.m_end[Z] < m_min[Z])) return false;
float dx = line.m_end[X] - line.m_start[X];
float dy = line.m_end[Y] - line.m_start[Y];
float dz = line.m_end[Z] - line.m_start[Z];
// avoid divide by zeros.
if ( !dx )
{
dx = ( 0.000001f );
}
if ( !dy )
{
dy = ( 0.000001f );
}
if ( !dz )
{
dz = ( 0.000001f );
}
//
// Garrett: I back-face cull 3 of the sides to reduce the calculations and keep
// the collisions down to one side.
// Check the max-x face.
if (line.m_start[X] > m_max[X] && line.m_end[X] < m_max[X] && (dx < 0.0f))
{
// It crosses the plane of the face, so calculate the y & z coords
// of the intersection and see if they are in the face,
float d=m_max[X] - line.m_start[X];
float y=d*dy/dx + line.m_start[Y];
float z=d*dz/dx + line.m_start[Z];
if (y < m_max[Y] && y > m_min[Y] && z < m_max[Z] && z > m_min[Z])
{
// It does collide!
point = Mth::Vector(m_max[X], y, z, 1.0f);
normal = Mth::Vector(1.0f, 0.0f, 0.0f, 0.0f);
return true;
}
}
// Check the min-x face.
if (line.m_start[X] < m_min[X] && line.m_end[X] > m_min[X] && (dx > 0.0f))
{
// It crosses the plane of the face, so calculate the y & z coords
// of the intersection and see if they are in the face,
float d=m_min[X] - line.m_start[X];
float y=d*dy/dx + line.m_start[Y];
float z=d*dz/dx + line.m_start[Z];
if (y < m_max[Y] && y > m_min[Y] && z < m_max[Z] && z > m_min[Z])
{
// It does collide!
point = Mth::Vector(m_min[X], y, z, 1.0f);
normal = Mth::Vector(-1.0f, 0.0f, 0.0f, 0.0f);
return true;
}
}
// Check the max-y face.
if (line.m_start[Y] > m_max[Y] && line.m_end[Y] < m_max[Y] && (dy < 0.0f))
{
// It crosses the plane of the face, so calculate the x & z coords
// of the intersection and see if they are in the face,
float d=m_max[Y] - line.m_start[Y];
float x=d*dx/dy + line.m_start[X];
float z=d*dz/dy + line.m_start[Z];
if (x < m_max[X] && x > m_min[X] && z < m_max[Z] && z > m_min[Z])
{
// It does collide!
point = Mth::Vector(x, m_max[Y], z, 1.0f);
normal = Mth::Vector(0.0f, 1.0f, 0.0f, 0.0f);
return true;
}
}
// Check the min-y face.
if (line.m_start[Y] < m_min[Y] && line.m_end[Y] > m_min[Y] && (dy > 0.0f))
{
// It crosses the plane of the face, so calculate the x & z coords
// of the intersection and see if they are in the face,
float d=m_min[Y] - line.m_start[Y];
float x=d*dx/dy + line.m_start[X];
float z=d*dz/dy + line.m_start[Z];
if (x < m_max[X] && x > m_min[X] && z < m_max[Z] && z > m_min[Z])
{
// It does collide!
point = Mth::Vector(x, m_min[Y], z, 1.0f);
normal = Mth::Vector(0.0f, -1.0f, 0.0f, 0.0f);
return true;
}
}
// Check the max-z face.
if (line.m_start[Z] > m_max[Z] && line.m_end[Z] < m_max[Z] && (dz < 0.0f))
{
// It crosses the plane of the face, so calculate the x & y coords
// of the intersection and see if they are in the face,
float d=m_max[Z] - line.m_start[Z];
float x=d*dx/dz + line.m_start[X];
float y=d*dy/dz + line.m_start[Y];
if (x < m_max[X] && x > m_min[X] && y < m_max[Y] && y > m_min[Y])
{
// It does collide!
point = Mth::Vector(x, y, m_max[Z], 1.0f);
normal = Mth::Vector(0.0f, 0.0f, 1.0f, 0.0f);
return true;
}
}
// Check the min-z face.
if (line.m_start[Z] < m_min[Z] && line.m_end[Z] > m_min[Z] && (dz > 0.0f))
{
// It crosses the plane of the face, so calculate the x & y coords
// of the intersection and see if they are in the face,
float d=m_min[Z] - line.m_start[Z];
float x=d*dx/dz + line.m_start[X];
float y=d*dy/dz + line.m_start[Y];
if (x < m_max[X] && x > m_min[X] && y < m_max[Y] && y > m_min[Y])
{
// It does collide!
point = Mth::Vector(x, y, m_min[Z], 1.0f);
normal = Mth::Vector(0.0f, 0.0f, -1.0f, 0.0f);
return true;
}
}
return false;
}
void CBBox::GetClosestIntersectPoint(const Mth::Vector &pos, Mth::Vector &point) const
{
uint32 axes_within_flags;
int axes_within = WithinAxes(pos, axes_within_flags);
if (axes_within == 3)
{
float closest_dist = -1.0f;
int closest_axis = -1;
float closest_axis_coord = 0.0f; // Value of the minimum axis coordinate
// Find the closest rectangle and move the point to that rectangle to find the intersection
// point.
for (int axis = X; axis <= Z; axis++)
{
float min_to_pos_dist = pos[axis] - m_min[axis];
float max_to_pos_dist = m_max[axis] - pos[axis];
Dbg_Assert(min_to_pos_dist >= 0.0f);
Dbg_Assert(max_to_pos_dist >= 0.0f);
float min_dist;
float min_coord;
// Figure out the closest distance
if (min_to_pos_dist < max_to_pos_dist)
{
min_dist = min_to_pos_dist;
min_coord = m_min[axis];
}
else
{
min_dist = max_to_pos_dist;
min_coord = m_max[axis];
}
// See if this is the first axis or if this one is closer
if ((axis == X) || (min_dist < closest_dist))
{
closest_axis = axis;
closest_dist = min_dist;
closest_axis_coord = min_coord;
}
}
Dbg_Assert((closest_axis >= X) && (closest_axis <= Z));
Dbg_Assert(closest_dist >= 0.0f);
// Calc the intersection point
point = pos; // Start with position
point[closest_axis] = closest_axis_coord;
#if 0
static int print_now;
if ((print_now++ % 60) == 0)
{
Dbg_Message("Closest axis %d, (min - max) pos (%f - %f) %f, closest dist %f, closest coord %f", closest_axis,
m_min[closest_axis], m_max[closest_axis], pos[closest_axis], closest_dist, closest_axis_coord);
}
#endif
}
else
{
point[W] = 1.0f; // Homogeneous
// Go through each axis. If the pos coordinate is between the min and max, use that
// coordinate. Otherwise, use the min or max coordinate that is closest.
for (int axis = X; axis <= Z; axis++)
{
if (axes_within_flags & (1 << axis))
{
// Within, use pos coord
point[axis] = pos[axis];
}
else
{
// Figure out which end we need
if (pos[axis] <= m_min[axis])
{
point[axis] = m_min[axis];
}
else
{
point[axis] = m_max[axis];
}
}
}
}
}
}