thug/Code/Gfx/NGC/p_nxparticlestar.cpp

312 lines
11 KiB
C++
Raw Permalink Normal View History

2016-02-13 21:39:12 +00:00
//****************************************************************************
//* MODULE: Gfx
//* FILENAME: p_nxParticle.cpp
//* OWNER: Paul Robinson
//* CREATION DATE: 3/27/2002
//****************************************************************************
#include <core/defines.h>
#include "gfx/Ngc/nx/render.h"
#include <gfx/NxTexMan.h>
#include <gfx/Ngc/p_nxtexture.h>
#include "gfx/Ngc/nx/mesh.h"
#include "gfx/ngc/nx/nx_init.h"
#include "sys/ngc/p_gx.h"
#include "gfx/Ngc/p_nxparticleStar.h"
namespace Nx
{
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleStar::CNgcParticleStar()
{
}
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleStar::CNgcParticleStar( uint32 checksum, int max_particles, uint32 texture_checksum, uint32 blendmode_checksum, int fix, int num_segments, float split, int history )
{
m_checksum = checksum;
m_max_particles = max_particles;
m_num_particles = 0;
mp_particle_array = new CParticleEntry[max_particles];
// Allocate vertex buffer.
mp_vertices = new float[max_particles * 3];
// // Create the engine representation.
// mp_engine_particle = new NxNgc::sParticleSystem( max_particles, texture_checksum, blendmode_checksum, fix );
//
// Get the texture.
Nx::CTexture *p_texture;
Nx::CNgcTexture *p_Ngc_texture;
mp_engine_texture = NULL;
p_texture = Nx::CTexDictManager::sp_particle_tex_dict->GetTexture( texture_checksum );
p_Ngc_texture = static_cast<Nx::CNgcTexture*>( p_texture );
if ( p_Ngc_texture )
{
mp_engine_texture = p_Ngc_texture->GetEngineTexture();
}
// Set blendmode.
m_blend = (uint8)get_texture_blend( blendmode_checksum );
m_fix = fix;
// Default color.
for ( int lp = 0; lp < 3; lp++ )
{
m_start_color[lp].r = 128;
m_start_color[lp].g = 128;
m_start_color[lp].b = 128;
m_start_color[lp].a = 128;
m_mid_color[lp].r = 128;
m_mid_color[lp].g = 128;
m_mid_color[lp].b = 128;
m_mid_color[lp].a = 128;
m_end_color[lp].r = 128;
m_end_color[lp].g = 128;
m_end_color[lp].b = 128;
m_end_color[lp].a = 128;
}
m_mid_time = -1.0f;
m_num_segments = num_segments;
m_split = split;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleStar::~CNgcParticleStar()
{
delete [] mp_particle_array;
delete [] mp_vertices;
// delete mp_engine_particle;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleStar::plat_get_position( int entry, int list, float * x, float * y, float * z )
{
float* p_v = &mp_vertices[entry*3];
*x = p_v[0];
*y = p_v[1];
*z = p_v[2];
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleStar::plat_set_position( int entry, int list, float x, float y, float z )
{
float* p_v = &mp_vertices[entry*3];
p_v[0] = x;
p_v[1] = y;
p_v[2] = z;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleStar::plat_add_position( int entry, int list, float x, float y, float z )
{
float* p_v = &mp_vertices[entry*3];
p_v[0] += x;
p_v[1] += y;
p_v[2] += z;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
int CNgcParticleStar::plat_get_num_particle_colors( void ) { return 3; }
int CNgcParticleStar::plat_get_num_vertex_lists( void ) { return 1; }
void CNgcParticleStar::plat_set_sr( int entry, uint8 value ) { m_start_color[entry].r = value; }
void CNgcParticleStar::plat_set_sg( int entry, uint8 value ) { m_start_color[entry].g = value; }
void CNgcParticleStar::plat_set_sb( int entry, uint8 value ) { m_start_color[entry].b = value; }
void CNgcParticleStar::plat_set_sa( int entry, uint8 value ) { m_start_color[entry].a = value; }
void CNgcParticleStar::plat_set_mr( int entry, uint8 value ) { m_mid_color[entry].r = value; }
void CNgcParticleStar::plat_set_mg( int entry, uint8 value ) { m_mid_color[entry].g = value; }
void CNgcParticleStar::plat_set_mb( int entry, uint8 value ) { m_mid_color[entry].b = value; }
void CNgcParticleStar::plat_set_ma( int entry, uint8 value ) { m_mid_color[entry].a = value; }
void CNgcParticleStar::plat_set_er( int entry, uint8 value ) { m_end_color[entry].r = value; }
void CNgcParticleStar::plat_set_eg( int entry, uint8 value ) { m_end_color[entry].g = value; }
void CNgcParticleStar::plat_set_eb( int entry, uint8 value ) { m_end_color[entry].b = value; }
void CNgcParticleStar::plat_set_ea( int entry, uint8 value ) { m_end_color[entry].a = value; }
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleStar::plat_render( void )
{
NxNgc::sMaterialHeader mat;
NxNgc::sMaterialPassHeader pass;
// Header.
mat.m_checksum = 0xa9db601e; // particle
mat.m_passes = 1;
mat.m_alpha_cutoff = 1;
mat.m_flags = (1<<1); // 2 sided.
// mat.m_shininess = 0.0f;
// Pass 0.
pass.m_texture.p_data = mp_engine_texture;
pass.m_flags = ( mp_engine_texture ? (1<<0) : 0 ) | (1<<5) | (1<<6); // textured, clamped.
pass.m_filter = 0;
pass.m_blend_mode = (unsigned char)m_blend;
pass.m_alpha_fix = (unsigned char)m_fix;
pass.m_k = 0;
pass.m_color.r = 128;
pass.m_color.g = 128;
pass.m_color.b = 128;
pass.m_color.a = 255;
NxNgc::multi_mesh( &mat, &pass, true, true );
GX::SetTexCoordGen( GX_TEXCOORD0, GX_TG_MTX2x4, GX_TG_TEX0, GX_FALSE, GX_PTIDENTITY );
GX::SetCurrMtxPosTex03( GX_PNMTX0, GX_IDENTITY, GX_IDENTITY, GX_IDENTITY, GX_IDENTITY );
// Draw the particles.
// Used to figure the right and up vectors for creating screen-aligned particle quads.
NsMatrix* p_matrix = &NxNgc::EngineGlobals.camera;
// Concatenate p_matrix with the emmission angle to create the direction.
NsVector up( 0.0f, 1.0f, 0.0f );
// Get the 'right' vector as the cross product of camera 'at and world 'up'.
NsVector screen_right;
NsVector screen_up;
screen_right.cross( *p_matrix->getAt(), up );
screen_up.cross( screen_right, *p_matrix->getAt());
screen_right.normalize();
screen_up.normalize();
int lp;
CParticleEntry *p_particle;
float *p_v;
GX::SetVtxDesc( 2, GX_VA_POS, GX_DIRECT, GX_VA_CLR0, GX_DIRECT );
for ( lp = 0, p_particle = mp_particle_array, p_v = mp_vertices; lp < m_num_particles; lp++, p_particle++, p_v += 3 )
{
float terp = p_particle->m_time / p_particle->m_life;
float w = p_particle->m_sw + ( ( p_particle->m_ew - p_particle->m_sw ) * terp );
float h = p_particle->m_sh + ( ( p_particle->m_eh - p_particle->m_sh ) * terp );
// Todo: Move hook to matrix/emitter code to cut down on per particle calculation.
Mth::Vector pos( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] );
Mth::Vector ss_right, ss_up; //, ss_pos;
Mth::Vector tmp[3];
VECScale((Vec*)&screen_right, (Vec*)&ss_right, w );
VECScale((Vec*)&screen_up, (Vec*)&ss_up, h );
GXColor color[3];
GXColor *p_col0;
GXColor *p_col1;
if ( m_mid_time >= 0.0f )
{
if ( terp < m_mid_time )
{
p_col0 = m_start_color;
p_col1 = m_mid_color;
// Adjust interpolation for this half of the color blend.
terp = terp / m_mid_time;
}
else
{
p_col0 = m_mid_color;
p_col1 = m_end_color;
// Adjust interpolation for this half of the color blend.
terp = ( terp - m_mid_time ) / ( 1.0f - m_mid_time );
}
}
else
{
// No mid color specified.
p_col0 = m_start_color;
p_col1 = m_end_color;
}
for ( int c = 0; c < 3; c++ )
{
GXColor start = *p_col0++;
GXColor end = *p_col1++;
color[c].r = start.r + (uint8)(( ((float)( end.r - start.r )) * terp ));
color[c].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp ));
color[c].b = start.b + (uint8)(( ((float)( end.b - start.b )) * terp ));
color[c].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp ));
}
tmp[0] = pos;
tmp[0] += ss_right * sinf( Mth::DegToRad( 0.0f ) ) * m_split;
tmp[0] += ss_up * cosf( Mth::DegToRad( 0.0f ) ) * m_split;
for ( int lp2 = 0; lp2 < m_num_segments; lp2++ )
{
tmp[1] = pos;
tmp[1] += ss_right * sinf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) ) * m_split;
tmp[1] += ss_up * cosf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) ) * m_split;
tmp[2] = pos;
tmp[2] += ss_right * sinf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments*2) ) * ( ( lp2 * 2 ) + 1 ) ) ) );
tmp[2] += ss_up * cosf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments*2) ) * ( ( lp2 * 2 ) + 1 ) ) ) );
GX::Begin( GX_TRIANGLESTRIP, GX_VTXFMT0, 4 );
GX::Position3f32( pos[X], pos[Y], pos[Z] );
GX::Color1u32( *((uint32*)&color[0]) );
GX::Position3f32( tmp[0][X], tmp[0][Y], tmp[0][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
GX::Position3f32( tmp[1][X], tmp[1][Y], tmp[1][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
GX::Position3f32( tmp[2][X], tmp[2][Y], tmp[2][Z] );
GX::Color1u32( *((uint32*)&color[2]) );
GX::End();
tmp[0] = tmp[1];
}
}
}
} // Nx