thug/Code/Gfx/NGC/p_nxparticleglowribbontrail.cpp

425 lines
14 KiB
C++
Raw Permalink Normal View History

2016-02-13 21:39:12 +00:00
//****************************************************************************
//* MODULE: Gfx
//* FILENAME: p_nxParticle.cpp
//* OWNER: Paul Robinson
//* CREATION DATE: 3/27/2002
//****************************************************************************
#include <core/defines.h>
#include "gfx/Ngc/nx/render.h"
#include <gfx/NxTexMan.h>
#include <gfx/Ngc/p_nxtexture.h>
#include "gfx/Ngc/nx/mesh.h"
#include "gfx/ngc/nx/nx_init.h"
#include "sys/ngc/p_gx.h"
#include "gfx/Ngc/p_nxparticleGlowRibbonTrail.h"
namespace Nx
{
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleGlowRibbonTrail::CNgcParticleGlowRibbonTrail()
{
}
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleGlowRibbonTrail::CNgcParticleGlowRibbonTrail( uint32 checksum, int max_particles, uint32 texture_checksum, uint32 blendmode_checksum, int fix, int num_segments, float split, int history )
{
m_checksum = checksum;
m_max_particles = max_particles;
m_num_particles = 0;
mp_particle_array = new CParticleEntry[max_particles];
// Allocate vertex buffer.
mp_vertices = new float*[( history + 1)];
for ( int lp = 0; lp < ( history + 1 ); lp++ )
{
mp_vertices[lp] = new float[max_particles * 3];
}
m_num_vertex_buffers = history + 1;
// // Create the engine representation.
// mp_engine_particle = new NxNgc::sParticleSystem( max_particles, texture_checksum, blendmode_checksum, fix );
//
// Get the texture.
Nx::CTexture *p_texture;
Nx::CNgcTexture *p_Ngc_texture;
mp_engine_texture = NULL;
p_texture = Nx::CTexDictManager::sp_particle_tex_dict->GetTexture( texture_checksum );
p_Ngc_texture = static_cast<Nx::CNgcTexture*>( p_texture );
if ( p_Ngc_texture )
{
mp_engine_texture = p_Ngc_texture->GetEngineTexture();
}
// Set blendmode.
m_blend = (uint8)get_texture_blend( blendmode_checksum );
m_fix = fix;
// Default color.
m_start_color = new GXColor[m_num_vertex_buffers+3];
m_mid_color = new GXColor[m_num_vertex_buffers+3];
m_end_color = new GXColor[m_num_vertex_buffers+3];
for ( int lp = 0; lp < (m_num_vertex_buffers+3); lp++ )
{
m_start_color[lp].r = 128;
m_start_color[lp].g = 128;
m_start_color[lp].b = 128;
m_start_color[lp].a = 128;
m_mid_color[lp].r = 128;
m_mid_color[lp].g = 128;
m_mid_color[lp].b = 128;
m_mid_color[lp].a = 128;
m_end_color[lp].r = 128;
m_end_color[lp].g = 128;
m_end_color[lp].b = 128;
m_end_color[lp].a = 128;
}
m_mid_time = -1.0f;
m_num_segments = num_segments;
m_split = split;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
CNgcParticleGlowRibbonTrail::~CNgcParticleGlowRibbonTrail()
{
delete [] mp_particle_array;
for ( int lp = 0; lp < m_num_vertex_buffers; lp++ )
{
delete [] mp_vertices[lp];
}
delete [] mp_vertices;
delete [] m_start_color;
delete [] m_mid_color;
delete [] m_end_color;
// delete mp_engine_particle;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleGlowRibbonTrail::plat_get_position( int entry, int list, float * x, float * y, float * z )
{
float* p_v = &mp_vertices[list][entry*3];
*x = p_v[0];
*y = p_v[1];
*z = p_v[2];
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleGlowRibbonTrail::plat_set_position( int entry, int list, float x, float y, float z )
{
float* p_v = &mp_vertices[list][entry*3];
p_v[0] = x;
p_v[1] = y;
p_v[2] = z;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleGlowRibbonTrail::plat_add_position( int entry, int list, float x, float y, float z )
{
float* p_v = &mp_vertices[list][entry*3];
p_v[0] += x;
p_v[1] += y;
p_v[2] += z;
}
/******************************************************************/
/* */
/* */
/******************************************************************/
int CNgcParticleGlowRibbonTrail::plat_get_num_particle_colors( void ) { return m_num_vertex_buffers + 3; }
int CNgcParticleGlowRibbonTrail::plat_get_num_vertex_lists( void ) { return m_num_vertex_buffers; }
void CNgcParticleGlowRibbonTrail::plat_set_sr( int entry, uint8 value ) { m_start_color[entry].r = value; }
void CNgcParticleGlowRibbonTrail::plat_set_sg( int entry, uint8 value ) { m_start_color[entry].g = value; }
void CNgcParticleGlowRibbonTrail::plat_set_sb( int entry, uint8 value ) { m_start_color[entry].b = value; }
void CNgcParticleGlowRibbonTrail::plat_set_sa( int entry, uint8 value ) { m_start_color[entry].a = value; }
void CNgcParticleGlowRibbonTrail::plat_set_mr( int entry, uint8 value ) { m_mid_color[entry].r = value; }
void CNgcParticleGlowRibbonTrail::plat_set_mg( int entry, uint8 value ) { m_mid_color[entry].g = value; }
void CNgcParticleGlowRibbonTrail::plat_set_mb( int entry, uint8 value ) { m_mid_color[entry].b = value; }
void CNgcParticleGlowRibbonTrail::plat_set_ma( int entry, uint8 value ) { m_mid_color[entry].a = value; }
void CNgcParticleGlowRibbonTrail::plat_set_er( int entry, uint8 value ) { m_end_color[entry].r = value; }
void CNgcParticleGlowRibbonTrail::plat_set_eg( int entry, uint8 value ) { m_end_color[entry].g = value; }
void CNgcParticleGlowRibbonTrail::plat_set_eb( int entry, uint8 value ) { m_end_color[entry].b = value; }
void CNgcParticleGlowRibbonTrail::plat_set_ea( int entry, uint8 value ) { m_end_color[entry].a = value; }
/******************************************************************/
/* */
/* */
/******************************************************************/
void CNgcParticleGlowRibbonTrail::plat_render( void )
{
NxNgc::sMaterialHeader mat;
NxNgc::sMaterialPassHeader pass;
// Header.
mat.m_checksum = 0xa9db601e; // particle
mat.m_passes = 1;
mat.m_alpha_cutoff = 1;
mat.m_flags = (1<<1); // 2 sided.
// mat.m_shininess = 0.0f;
// Pass 0.
pass.m_texture.p_data = mp_engine_texture;
pass.m_flags = ( mp_engine_texture ? (1<<0) : 0 ) | (1<<5) | (1<<6); // textured, clamped.
pass.m_filter = 0;
pass.m_blend_mode = (unsigned char)m_blend;
pass.m_alpha_fix = (unsigned char)m_fix;
pass.m_k = 0;
pass.m_color.r = 128;
pass.m_color.g = 128;
pass.m_color.b = 128;
pass.m_color.a = 255;
NxNgc::multi_mesh( &mat, &pass, true, true );
GX::SetTexCoordGen( GX_TEXCOORD0, GX_TG_MTX2x4, GX_TG_TEX0, GX_FALSE, GX_PTIDENTITY );
GX::SetCurrMtxPosTex03( GX_PNMTX0, GX_IDENTITY, GX_IDENTITY, GX_IDENTITY, GX_IDENTITY );
// Draw the ribbontrail.
// Used to figure the right and up vectors for creating screen-aligned particle quads.
NsMatrix* p_matrix = &NxNgc::EngineGlobals.camera;
// Concatenate p_matrix with the emmission angle to create the direction.
Mth::Vector up( 0.0f, 1.0f, 0.0f, 0.0f );
// Get the 'right' vector as the cross product of camera 'at and world 'up'.
Mth::Vector at( p_matrix->getAtX(), p_matrix->getAtY(), p_matrix->getAtZ(), 0.0f );
Mth::Vector screen_right = Mth::CrossProduct( at, up );
Mth::Vector screen_up = Mth::CrossProduct( screen_right, at );
screen_right.Normalize();
screen_up.Normalize();
int lp;
CParticleEntry *p_particle;
float *p_v;
GXColor color[3];
GXColor *p_col0;
GXColor *p_col1;
GX::SetVtxDesc( 2, GX_VA_POS, GX_DIRECT, GX_VA_CLR0, GX_DIRECT );
for ( lp = 0, p_particle = mp_particle_array; lp < m_num_particles; lp++, p_particle++ )
{
float terp = p_particle->m_time / p_particle->m_life;
Mth::Vector pos[2];
p_v = &mp_vertices[0][lp*3];
pos[0].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] );
p_v = &mp_vertices[1][lp*3];
pos[1].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] );
Mth::Vector part_vec = pos[1] - pos[0];
Mth::Vector perp_vec = Mth::CrossProduct( part_vec, at );
perp_vec.Normalize();
float w = p_particle->m_sw + ( ( p_particle->m_ew - p_particle->m_sw ) * terp );
float h = p_particle->m_sh + ( ( p_particle->m_eh - p_particle->m_sh ) * terp );
Mth::Vector tmp[4];
if ( m_mid_time >= 0.0f )
{
if ( terp < m_mid_time )
{
p_col0 = &m_start_color[3];
p_col1 = &m_mid_color[3];
// Adjust interpolation for this half of the color blend.
terp = terp / m_mid_time;
}
else
{
p_col0 = &m_mid_color[3];
p_col1 = &m_end_color[3];
// Adjust interpolation for this half of the color blend.
terp = ( terp - m_mid_time ) / ( 1.0f - m_mid_time );
}
}
else
{
// No mid color specified.
p_col0 = &m_start_color[3];
p_col1 = &m_end_color[3];
}
GXColor start = *p_col0++;
GXColor end = *p_col1++;
color[0].r = start.r + (uint8)(( ((float)( end.r - start.r )) * terp ));
color[0].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp ));
color[0].b = start.b + (uint8)(( ((float)( end.b - start.b )) * terp ));
color[0].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp ));
tmp[0] = pos[0] + ( perp_vec * w * m_split );
tmp[1] = pos[0] - ( perp_vec * w * m_split );
GX::Begin( GX_QUADS, GX_VTXFMT0, 4 * ( m_num_vertex_buffers - 1 ) );
for ( int c = 1; c < m_num_vertex_buffers; c++ )
{
start = *p_col0++;
end = *p_col1++;
color[1].r = start.r + (uint8)(( ((float)( end.r - start.r )) * terp ));
color[1].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp ));
color[1].b = start.b + (uint8)(( ((float)( end.b - start.b )) * terp ));
color[1].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp ));
if ( c > 1 )
{
p_v = &mp_vertices[c][lp*3];
pos[1].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] );
part_vec = pos[1] - pos[0];
perp_vec = Mth::CrossProduct( part_vec, at );
perp_vec.Normalize();
}
tmp[2] = pos[1] - ( perp_vec * w * m_split );
tmp[3] = pos[1] + ( perp_vec * w * m_split );
GX::Position3f32( tmp[0][X], tmp[0][Y], tmp[0][Z] );
GX::Color1u32( *((uint32*)&color[0]) );
GX::Position3f32( tmp[1][X], tmp[1][Y], tmp[1][Z] );
GX::Color1u32( *((uint32*)&color[0]) );
GX::Position3f32( tmp[2][X], tmp[2][Y], tmp[2][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
GX::Position3f32( tmp[3][X], tmp[3][Y], tmp[3][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
color[0] = color[1];
pos[0] = pos[1];
tmp[0] = tmp[3];
tmp[1] = tmp[2];
}
GX::End();
// Draw the glow.
// Todo: Move hook to matrix/emitter code to cut down on per particle calculation.
p_v = &mp_vertices[0][lp*3];
pos[0].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] );
Mth::Vector ss_right, ss_up; //, ss_pos;
ss_right = screen_right * w;
ss_up = screen_up * h;
if ( m_mid_time >= 0.0f )
{
if ( terp < m_mid_time )
{
p_col0 = m_start_color;
p_col1 = m_mid_color;
// Adjust interpolation for this half of the color blend.
terp = terp / m_mid_time;
}
else
{
p_col0 = m_mid_color;
p_col1 = m_end_color;
// Adjust interpolation for this half of the color blend.
terp = ( terp - m_mid_time ) / ( 1.0f - m_mid_time );
}
}
else
{
// No mid color specified.
p_col0 = m_start_color;
p_col1 = m_end_color;
}
for ( int c = 0; c < 3; c++ )
{
GXColor start = *p_col0++;
GXColor end = *p_col1++;
color[c].r = start.r + (uint8)(( ((float)( end.r - start.r )) * terp ));
color[c].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp ));
color[c].b = start.b + (uint8)(( ((float)( end.b - start.b )) * terp ));
color[c].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp ));
}
tmp[0] = pos[0];
tmp[0] += ss_right * sinf( Mth::DegToRad( 0.0f ) ) * m_split;
tmp[0] += ss_up * cosf( Mth::DegToRad( 0.0f ) ) * m_split;
tmp[2] = pos[0];
tmp[2] += ss_right * sinf( Mth::DegToRad( 0.0f ) );
tmp[2] += ss_up * cosf( Mth::DegToRad( 0.0f ) );
for ( int lp2 = 0; lp2 < m_num_segments; lp2++ )
{
tmp[1] = pos[0];
tmp[1] += ss_right * sinf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) ) * m_split;
tmp[1] += ss_up * cosf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) ) * m_split;
tmp[3] = pos[0];
tmp[3] += ss_right * sinf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) );
tmp[3] += ss_up * cosf( Mth::DegToRad( ( ( 360.0f / ((float)m_num_segments) ) * ( lp2 + 1 ) ) ) );
GX::Begin( GX_TRIANGLESTRIP, GX_VTXFMT0, 5 );
GX::Position3f32( pos[0][X], pos[0][Y], pos[0][Z] );
GX::Color1u32( *((uint32*)&color[0]) );
GX::Position3f32( tmp[0][X], tmp[0][Y], tmp[0][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
GX::Position3f32( tmp[1][X], tmp[1][Y], tmp[1][Z] );
GX::Color1u32( *((uint32*)&color[1]) );
GX::Position3f32( tmp[2][X], tmp[2][Y], tmp[2][Z] );
GX::Color1u32( *((uint32*)&color[2]) );
GX::Position3f32( tmp[3][X], tmp[3][Y], tmp[3][Z] );
GX::Color1u32( *((uint32*)&color[2]) );
GX::End();
tmp[0] = tmp[1];
tmp[2] = tmp[3];
}
}
}
} // Nx