1
mirror of git://git.acid.vegas/random.git synced 2024-11-14 12:06:38 +00:00
random/stdcap.py

100 lines
3.1 KiB
Python
Raw Normal View History

2019-06-28 02:39:56 +00:00
#!/usr/bin/env python
# CoinMarketCap Standard Deviation - Developed by acidvegas in Python (https://acid.vegas/random)
'''
The script will calculate the mean, median, mode, high, low & std for the entire cryptocurrency market over the last 7 days.
API Documentation:
https://coinmarketcap.com/api/
'''
import datetime
import http.client
import json
import math
import time
import statistics
class CoinMarketCap(object):
def __init__(self):
self.cache = {'ticker':{'BTC':{'last_updated':0}}}
def _ticker(self):
conn = http.client.HTTPSConnection('api.coinmarketcap.com')
conn.request('GET', '/v1/ticker/?limit=0')
data = json.loads(conn.getresponse().read().replace(b': null', b': "0"'))
conn.close()
return data
def _markets():
conn = http.client.HTTPSConnection('s2.coinmarketcap.com')
conn.request('GET', '/generated/search/quick_search.json')
data = json.loads(conn.getresponse().read())
conn.close()
results = dict()
for item in data:
results[item['id']] = item['name']
return results
def _graph(self, name, start_time, end_time):
conn = http.client.HTTPSConnection('graphs2.coinmarketcap.com', timeout=60)
conn.request('GET', f'/currencies/{name}/{start_time}/{end_time}/')
return json.loads(conn.getresponse().read())
def generate_table(data):
matrix = dict()
keys = data[0].keys()
for item in keys:
matrix[item] = list()
del keys
for item in data:
for subitem in item:
matrix[subitem].append(item[subitem])
for item in matrix:
matrix[item] = len(max(matrix[item], key=len))
columns = [item.ljust(matrix[item]) for item in matrix.keys()]
print(' '.join(columns))
del columns
for item in data:
row_columns = [item[subitem].ljust(matrix[subitem]) for subitem in item]
print(' | '.join(row_columns))
def stddev(data):
n = len(data)
if n <= 1:
return 0.0
mean = avg_calc(data)
sd = 0.0
for el in data:
sd += (float(el)-mean)**2
sd = math.sqrt(sd/float(n-1))
return sd
def avg_calc(ls):
n = len(ls)
mean = 0.0
if n <= 1:
return ls[0]
for el in ls:
mean = mean+float(el)
mean = mean/float(n)
return mean
def get_data(coin, start_time, end_time):
try:
time.sleep(4)
data = [item[1] for item in CMC._graph(coin, start_time, end_time)['price_usd']]
return {'name':coin,'mean':f'{sum(data)/len(data):.2f}','median':f'{statistics.median(data):.2f}','mode':f'{max(set(data),key=data.count):.2f}','high':f'{max(data):.2f}','low':f'{min(data):.2f}','std':f'{stddev(data):.2f}'}
except:
return {'name':'none','mean':'none','median':'none','mode':'none','high':'none','low':'none','std':'0'}
CMC = CoinMarketCap()
ticker_data = CMC._ticker()
start_time = int((datetime.datetime.now()-datetime.timedelta(days=7)).timestamp()*1000)
end_time = int(datetime.datetime.now().timestamp()*1000)
coins = [item['id'] for item in ticker_data] #[:10]
data = [get_data(coin, start_time, end_time) for coin in coins]
data = sorted(data, key=lambda k: float(k['std']), reverse=True)
generate_table(data)
size=len(CMC._graph('bitcoin', start_time, end_time)['price_usd'])
print('Spread acrosss 7 days - ' + str(size) + ' points')