eris/ingestors/ingest_zone.py

188 lines
5.2 KiB
Python
Raw Normal View History

2024-01-20 07:04:50 +00:00
#!/usr/bin/env python
# Elasticsearch Recon Ingestion Scripts (ERIS) - Developed by Acidvegas (https://git.acid.vegas/eris)
# ingest_zone.py
2024-01-20 07:04:50 +00:00
2024-03-08 05:07:26 +00:00
import logging
2024-01-20 07:04:50 +00:00
import time
try:
2024-03-12 02:33:18 +00:00
import aiofiles
except ImportError:
2024-03-12 02:33:18 +00:00
raise ImportError('Missing required \'aiofiles\' library. (pip install aiofiles)')
2024-03-12 02:33:18 +00:00
# Set a default elasticsearch index if one is not provided
default_index = 'eris-zones'
2024-03-12 02:33:18 +00:00
# Known DNS record types found in zone files
record_types = ('a','aaaa','caa','cdnskey','cds','cname','dnskey','ds','mx','naptr','ns','nsec','nsec3','nsec3param','ptr','rrsig','rp','sshfp','soa','srv','txt','type65534')
2024-01-20 07:04:50 +00:00
def construct_map() -> dict:
2024-03-12 02:33:18 +00:00
'''Construct the Elasticsearch index mapping for zone file records.'''
# Match on exact value or full text search
keyword_mapping = { 'type': 'text', 'fields': { 'keyword': { 'type': 'keyword', 'ignore_above': 256 } } }
# Construct the index mapping
mapping = {
'mappings': {
'properties': {
'domain' : keyword_mapping,
'records' : { 'type': 'nested', 'properties': {} },
'source' : { 'type': 'keyword' },
2024-03-12 02:33:18 +00:00
'seen' : { 'type': 'date' }
}
}
}
# Add record types to mapping dynamically to not clutter the code
for record_type in record_types:
if record_type in ('a','aaaa'):
mapping['mappings']['properties']['records']['properties'][record_type] = {
'type' : 'nested',
'properties' : {
'data' : { 'type': 'ip' if record_type in ('a','aaaa') else keyword_mapping },
'ttl' : { 'type': 'integer' }
2024-03-12 02:33:18 +00:00
}
}
return mapping
2024-01-20 07:04:50 +00:00
async def process_data(file_path: str):
2024-03-12 02:33:18 +00:00
'''
Read and process the input file
:param input_path: Path to the input file
'''
async with aiofiles.open(file_path) as input_file:
# Initialize the cache
last = None
# Read the input file line by line
async for line in input_file:
line = line.strip()
# Sentinel value to indicate the end of a process (for closing out a FIFO stream)
if line == '~eof':
yield last
break
# Skip empty lines and comments
if not line or line.startswith(';'):
continue
# Split the line into its parts
parts = line.split()
# Ensure the line has at least 3 parts
if len(parts) < 5:
logging.warning(f'Invalid line: {line}')
continue
# Split the record into its parts
domain, ttl, record_class, record_type, data = parts[0].rstrip('.').lower(), parts[1], parts[2].lower(), parts[3].lower(), ' '.join(parts[4:])
# Ensure the TTL is a number
if not ttl.isdigit():
logging.warning(f'Invalid TTL: {ttl} with line: {line}')
continue
else:
ttl = int(ttl)
# Do not index other record classes (doubtful any CHAOS/HESIOD records will be found in zone files)
if record_class != 'in':
logging.warning(f'Unsupported record class: {record_class} with line: {line}')
continue
# Do not index other record types
if record_type not in record_types:
logging.warning(f'Unsupported record type: {record_type} with line: {line}')
continue
# Little tidying up for specific record types (removing trailing dots, etc)
if record_type == 'nsec':
data = ' '.join([data.split()[0].rstrip('.'), *data.split()[1:]])
elif record_type == 'soa':
data = ' '.join([part.rstrip('.') if '.' in part else part for part in data.split()])
elif data.endswith('.'):
data = data.rstrip('.')
# Check if we are still processing the same domain
if last:
if domain == last['domain']: # This record is for the same domain as the cached document
if record_type in last['_doc']['records']:
last['_doc']['records'][record_type].append({'ttl': ttl, 'data': data}) # Do we need to check for duplicate records?
else:
last['_doc']['records'][record_type] = [{'ttl': ttl, 'data': data}]
continue
else:
yield last # Return the last document and start a new one
# Cache the document
last = {
'_op_type' : 'update',
'_id' : domain,
'_index' : default_index,
'_doc' : {
'domain' : domain,
'records' : {record_type: [{'data': data, 'ttl': ttl}]},
'source' : 'czds',
2024-03-12 02:33:18 +00:00
'seen' : time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime()) # Zone files do not contain a timestamp, so we use the current time
},
'doc_as_upsert' : True # This will create the document if it does not exist
}
async def test(input_path: str):
2024-03-12 02:33:18 +00:00
'''
Test the ingestion process
:param input_path: Path to the input file
'''
async for document in process_data(input_path):
print(document)
if __name__ == '__main__':
2024-03-12 02:33:18 +00:00
import argparse
import asyncio
2024-03-12 02:33:18 +00:00
parser = argparse.ArgumentParser(description='Ingestor for ERIS')
parser.add_argument('input_path', help='Path to the input file or directory')
args = parser.parse_args()
asyncio.run(test(args.input_path))
'''
Output:
2024-03-12 02:33:18 +00:00
1001.vegas. 3600 in ns ns11.waterrockdigital.com.
1001.vegas. 3600 in ns ns12.waterrockdigital.com.
Input:
2024-03-12 02:33:18 +00:00
{
'_id' : '1001.vegas'
'_index' : 'dns-zones',
'_source' : {
'domain' : '1001.vegas',
'records' : {
'ns': [
{'ttl': 3600, 'data': 'ns11.waterrockdigital.com'},
{'ttl': 3600, 'data': 'ns12.waterrockdigital.com'}
]
},
'seen' : '2021-09-01T00:00:00Z'
}
}
Notes:
2024-03-12 02:33:18 +00:00
How do we want to handle hashed NSEC3 records? Do we ignest them as they are, or crack the NSEC3 hashes first and ingest?
'''