180 lines
5.6 KiB
C++
180 lines
5.6 KiB
C++
// Sketch to draw an analogue clock on the screen
|
|
// This uses anti-aliased drawing functions that are built into TFT_eSPI
|
|
|
|
// Anti-aliased lines can be drawn with sub-pixel resolution and permit lines to be
|
|
// drawn with less jaggedness.
|
|
|
|
// Based on a sketch by DavyLandman:
|
|
// https://github.com/Bodmer/TFT_eSPI/issues/905
|
|
|
|
|
|
#define WIFI_SSID "Your_SSID"
|
|
#define WIFI_PASSWORD "Your_Password"
|
|
|
|
#include <Arduino.h>
|
|
#include <TFT_eSPI.h> // Master copy here: https://github.com/Bodmer/TFT_eSPI
|
|
#include <SPI.h>
|
|
|
|
#include "NotoSansBold15.h"
|
|
|
|
TFT_eSPI tft = TFT_eSPI(); // Invoke library, pins defined in User_Setup.h
|
|
TFT_eSprite face = TFT_eSprite(&tft);
|
|
|
|
#define CLOCK_X_POS 10
|
|
#define CLOCK_Y_POS 10
|
|
|
|
#define CLOCK_FG TFT_SKYBLUE
|
|
#define CLOCK_BG TFT_NAVY
|
|
#define SECCOND_FG TFT_RED
|
|
#define LABEL_FG TFT_GOLD
|
|
|
|
#define CLOCK_R 127.0f / 2.0f // Clock face radius (float type)
|
|
#define H_HAND_LENGTH CLOCK_R/2.0f
|
|
#define M_HAND_LENGTH CLOCK_R/1.4f
|
|
#define S_HAND_LENGTH CLOCK_R/1.3f
|
|
|
|
#define FACE_W CLOCK_R * 2 + 1
|
|
#define FACE_H CLOCK_R * 2 + 1
|
|
|
|
// Calculate 1 second increment angles. Hours and minute hand angles
|
|
// change every second so we see smooth sub-pixel movement
|
|
#define SECOND_ANGLE 360.0 / 60.0
|
|
#define MINUTE_ANGLE SECOND_ANGLE / 60.0
|
|
#define HOUR_ANGLE MINUTE_ANGLE / 12.0
|
|
|
|
// Sprite width and height
|
|
#define FACE_W CLOCK_R * 2 + 1
|
|
#define FACE_H CLOCK_R * 2 + 1
|
|
|
|
// Time h:m:s
|
|
uint8_t h = 0, m = 0, s = 0;
|
|
|
|
float time_secs = h * 3600 + m * 60 + s;
|
|
|
|
// Load header after time_secs global variable has been created so it is in scope
|
|
#include "NTP_Time.h" // Attached to this sketch, see that tab for library needs
|
|
|
|
// Time for next tick
|
|
uint32_t targetTime = 0;
|
|
|
|
// =========================================================================
|
|
// Setup
|
|
// =========================================================================
|
|
void setup() {
|
|
Serial.begin(115200);
|
|
Serial.println("Booting...");
|
|
|
|
// Initialise the screen
|
|
tft.init();
|
|
|
|
// Ideally set orientation for good viewing angle range because
|
|
// the anti-aliasing effectiveness varies with screen viewing angle
|
|
// Usually this is when screen ribbon connector is at the bottom
|
|
tft.setRotation(0);
|
|
tft.fillScreen(TFT_BLACK);
|
|
|
|
// Create the clock face sprite
|
|
//face.setColorDepth(8); // 8 bit will work, but reduces effectiveness of anti-aliasing
|
|
face.createSprite(FACE_W, FACE_H);
|
|
|
|
// Only 1 font used in the sprite, so can remain loaded
|
|
face.loadFont(NotoSansBold15);
|
|
|
|
// Draw the whole clock - NTP time not available yet
|
|
renderFace(time_secs);
|
|
|
|
targetTime = millis() + 100;
|
|
}
|
|
|
|
// =========================================================================
|
|
// Loop
|
|
// =========================================================================
|
|
void loop() {
|
|
// Update time periodically
|
|
if (targetTime < millis()) {
|
|
|
|
// Update next tick time in 100 milliseconds for smooth movement
|
|
targetTime = millis() + 100;
|
|
|
|
// Increment time by 100 milliseconds
|
|
time_secs += 0.100;
|
|
|
|
// Midnight roll-over
|
|
if (time_secs >= (60 * 60 * 24)) time_secs = 0;
|
|
|
|
// All graphics are drawn in sprite to stop flicker
|
|
renderFace(time_secs);
|
|
|
|
// Request time from NTP server and synchronise the local clock
|
|
// (clock may pause since this may take >100ms)
|
|
syncTime();
|
|
}
|
|
}
|
|
|
|
// =========================================================================
|
|
// Draw the clock face in the sprite
|
|
// =========================================================================
|
|
static void renderFace(float t) {
|
|
float h_angle = t * HOUR_ANGLE;
|
|
float m_angle = t * MINUTE_ANGLE;
|
|
float s_angle = t * SECOND_ANGLE;
|
|
|
|
// The face is completely redrawn - this can be done quickly
|
|
face.fillSprite(TFT_BLACK);
|
|
|
|
// Draw the face circle
|
|
face.fillSmoothCircle( CLOCK_R, CLOCK_R, CLOCK_R, CLOCK_BG );
|
|
|
|
// Set text datum to middle centre and the colour
|
|
face.setTextDatum(MC_DATUM);
|
|
|
|
// The background colour will be read during the character rendering
|
|
face.setTextColor(CLOCK_FG, CLOCK_BG);
|
|
|
|
// Text offset adjustment
|
|
constexpr uint32_t dialOffset = CLOCK_R - 10;
|
|
|
|
float xp = 0.0, yp = 0.0; // Use float pixel position for smooth AA motion
|
|
|
|
// Draw digits around clock perimeter
|
|
for (uint32_t h = 1; h <= 12; h++) {
|
|
getCoord(CLOCK_R, CLOCK_R, &xp, &yp, dialOffset, h * 360.0 / 12);
|
|
face.drawNumber(h, xp, 2 + yp);
|
|
}
|
|
|
|
// Add text (could be digital time...)
|
|
face.setTextColor(LABEL_FG, CLOCK_BG);
|
|
face.drawString("TFT_eSPI", CLOCK_R, CLOCK_R * 0.75);
|
|
|
|
// Draw minute hand
|
|
getCoord(CLOCK_R, CLOCK_R, &xp, &yp, M_HAND_LENGTH, m_angle);
|
|
face.drawWideLine(CLOCK_R, CLOCK_R, xp, yp, 6.0f, CLOCK_FG);
|
|
face.drawWideLine(CLOCK_R, CLOCK_R, xp, yp, 2.0f, CLOCK_BG);
|
|
|
|
// Draw hour hand
|
|
getCoord(CLOCK_R, CLOCK_R, &xp, &yp, H_HAND_LENGTH, h_angle);
|
|
face.drawWideLine(CLOCK_R, CLOCK_R, xp, yp, 6.0f, CLOCK_FG);
|
|
face.drawWideLine(CLOCK_R, CLOCK_R, xp, yp, 2.0f, CLOCK_BG);
|
|
|
|
// Draw the central pivot circle
|
|
face.fillSmoothCircle(CLOCK_R, CLOCK_R, 4, CLOCK_FG);
|
|
|
|
// Draw cecond hand
|
|
getCoord(CLOCK_R, CLOCK_R, &xp, &yp, S_HAND_LENGTH, s_angle);
|
|
face.drawWedgeLine(CLOCK_R, CLOCK_R, xp, yp, 2.5, 1.0, SECCOND_FG);
|
|
face.pushSprite(5, 5, TFT_TRANSPARENT);
|
|
}
|
|
|
|
// =========================================================================
|
|
// Get coordinates of end of a line, pivot at x,y, length r, angle a
|
|
// =========================================================================
|
|
// Coordinates are returned to caller via the xp and yp pointers
|
|
#define DEG2RAD 0.0174532925
|
|
void getCoord(int16_t x, int16_t y, float *xp, float *yp, int16_t r, float a)
|
|
{
|
|
float sx1 = cos( (a - 90) * DEG2RAD);
|
|
float sy1 = sin( (a - 90) * DEG2RAD);
|
|
*xp = sx1 * r + x;
|
|
*yp = sy1 * r + y;
|
|
}
|