acid-drop/lib/TFT_eSPI/examples/320 x 240/TFT_ArcFill/TFT_ArcFill.ino

169 lines
4.2 KiB
Arduino
Raw Permalink Normal View History

2024-05-23 22:42:03 +00:00
// Demo using arcFill to draw ellipses and a segmented elipse
#include <TFT_eSPI.h> // Hardware-specific library
#include <SPI.h>
TFT_eSPI tft = TFT_eSPI(); // Invoke custom library
#define DEG2RAD 0.0174532925
#define LOOP_DELAY 10 // Loop delay to slow things down
byte inc = 0;
unsigned int col = 0;
byte red = 31; // Red is the top 5 bits of a 16 bit colour value
byte green = 0;// Green is the middle 6 bits
byte blue = 0; // Blue is the bottom 5 bits
byte state = 0;
void setup(void) {
tft.begin();
tft.setRotation(1);
tft.fillScreen(TFT_BLACK);
}
void loop() {
// Continuous elliptical arc drawing
fillArc(160, 120, inc * 6, 1, 140, 100, 10, rainbow(col));
// Continuous segmented (inc*2) elliptical arc drawing
fillArc(160, 120, ((inc * 2) % 60) * 6, 1, 120, 80, 30, rainbow(col));
// Circle drawing using arc with arc width = radius
fillArc(160, 120, inc * 6, 1, 42, 42, 42, rainbow(col));
inc++;
col += 1;
if (col > 191) col = 0;
if (inc > 59) inc = 0;
delay(LOOP_DELAY);
}
// #########################################################################
// Draw a circular or elliptical arc with a defined thickness
// #########################################################################
// x,y == coords of centre of arc
// start_angle = 0 - 359
// seg_count = number of 6 degree segments to draw (60 => 360 degree arc)
// rx = x axis outer radius
// ry = y axis outer radius
// w = width (thickness) of arc in pixels
// colour = 16 bit colour value
// Note if rx and ry are the same then an arc of a circle is drawn
void fillArc(int x, int y, int start_angle, int seg_count, int rx, int ry, int w, unsigned int colour)
{
byte seg = 6; // Segments are 3 degrees wide = 120 segments for 360 degrees
byte inc = 6; // Draw segments every 3 degrees, increase to 6 for segmented ring
// Calculate first pair of coordinates for segment start
float sx = cos((start_angle - 90) * DEG2RAD);
float sy = sin((start_angle - 90) * DEG2RAD);
uint16_t x0 = sx * (rx - w) + x;
uint16_t y0 = sy * (ry - w) + y;
uint16_t x1 = sx * rx + x;
uint16_t y1 = sy * ry + y;
// Draw colour blocks every inc degrees
for (int i = start_angle; i < start_angle + seg * seg_count; i += inc) {
// Calculate pair of coordinates for segment end
float sx2 = cos((i + seg - 90) * DEG2RAD);
float sy2 = sin((i + seg - 90) * DEG2RAD);
int x2 = sx2 * (rx - w) + x;
int y2 = sy2 * (ry - w) + y;
int x3 = sx2 * rx + x;
int y3 = sy2 * ry + y;
tft.fillTriangle(x0, y0, x1, y1, x2, y2, colour);
tft.fillTriangle(x1, y1, x2, y2, x3, y3, colour);
// Copy segment end to sgement start for next segment
x0 = x2;
y0 = y2;
x1 = x3;
y1 = y3;
}
}
// #########################################################################
// Return the 16 bit colour with brightness 0-100%
// #########################################################################
unsigned int brightness(unsigned int colour, int brightness)
{
byte red = colour >> 11;
byte green = (colour & 0x7E0) >> 5;
byte blue = colour & 0x1F;
blue = (blue * brightness) / 100;
green = (green * brightness) / 100;
red = (red * brightness) / 100;
return (red << 11) + (green << 5) + blue;
}
// #########################################################################
// Return a 16 bit rainbow colour
// #########################################################################
unsigned int rainbow(byte value)
{
// Value is expected to be in range 0-127
// The value is converted to a spectrum colour from 0 = blue through to 127 = red
switch (state) {
case 0:
green ++;
if (green == 64) {
green = 63;
state = 1;
}
break;
case 1:
red--;
if (red == 255) {
red = 0;
state = 2;
}
break;
case 2:
blue ++;
if (blue == 32) {
blue = 31;
state = 3;
}
break;
case 3:
green --;
if (green == 255) {
green = 0;
state = 4;
}
break;
case 4:
red ++;
if (red == 32) {
red = 31;
state = 5;
}
break;
case 5:
blue --;
if (blue == 255) {
blue = 0;
state = 0;
}
break;
}
return red << 11 | green << 5 | blue;
}