soju/user.go

1009 lines
23 KiB
Go
Raw Normal View History

2020-03-16 03:18:41 -07:00
package soju
import (
"context"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"fmt"
"math/big"
"net"
2020-03-16 03:18:41 -07:00
"time"
"gopkg.in/irc.v3"
2020-03-16 03:18:41 -07:00
)
type event interface{}
type eventUpstreamMessage struct {
msg *irc.Message
uc *upstreamConn
}
type eventUpstreamConnectionError struct {
net *network
err error
}
type eventUpstreamConnected struct {
uc *upstreamConn
}
type eventUpstreamDisconnected struct {
uc *upstreamConn
}
type eventUpstreamError struct {
uc *upstreamConn
err error
}
type eventDownstreamMessage struct {
msg *irc.Message
dc *downstreamConn
}
type eventDownstreamConnected struct {
dc *downstreamConn
}
type eventDownstreamDisconnected struct {
dc *downstreamConn
}
type eventChannelDetach struct {
uc *upstreamConn
name string
}
type eventBroadcast struct {
msg *irc.Message
}
2020-08-03 09:45:13 -07:00
type eventStop struct{}
2021-10-12 00:11:14 -07:00
type eventUserUpdate struct {
password *string
admin *bool
done chan error
}
type deliveredClientMap map[string]string // client name -> msg ID
type deliveredStore struct {
m deliveredCasemapMap
}
func newDeliveredStore() deliveredStore {
return deliveredStore{deliveredCasemapMap{newCasemapMap(0)}}
}
func (ds deliveredStore) HasTarget(target string) bool {
return ds.m.Value(target) != nil
}
func (ds deliveredStore) LoadID(target, clientName string) string {
clients := ds.m.Value(target)
if clients == nil {
return ""
}
return clients[clientName]
}
func (ds deliveredStore) StoreID(target, clientName, msgID string) {
clients := ds.m.Value(target)
if clients == nil {
clients = make(deliveredClientMap)
ds.m.SetValue(target, clients)
}
clients[clientName] = msgID
}
func (ds deliveredStore) ForEachTarget(f func(target string)) {
for _, entry := range ds.m.innerMap {
f(entry.originalKey)
}
}
func (ds deliveredStore) ForEachClient(f func(clientName string)) {
clients := make(map[string]struct{})
for _, entry := range ds.m.innerMap {
delivered := entry.value.(deliveredClientMap)
for clientName := range delivered {
clients[clientName] = struct{}{}
}
}
for clientName := range clients {
f(clientName)
}
}
2020-03-16 03:18:41 -07:00
type network struct {
Network
user *user
2021-04-13 11:12:49 -07:00
logger Logger
stopped chan struct{}
2020-03-20 14:48:17 -07:00
conn *upstreamConn
channels channelCasemapMap
delivered deliveredStore
lastError error
casemap casemapping
2020-03-16 03:18:41 -07:00
}
func newNetwork(user *user, record *Network, channels []Channel) *network {
2021-04-13 11:12:49 -07:00
logger := &prefixLogger{user.logger, fmt.Sprintf("network %q: ", record.GetName())}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
m := channelCasemapMap{newCasemapMap(0)}
for _, ch := range channels {
ch := ch
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
m.SetValue(ch.Name, &ch)
}
2020-03-16 03:18:41 -07:00
return &network{
Network: *record,
user: user,
2021-04-13 11:12:49 -07:00
logger: logger,
stopped: make(chan struct{}),
channels: m,
delivered: newDeliveredStore(),
casemap: casemapRFC1459,
2020-03-16 03:18:41 -07:00
}
}
func (net *network) forEachDownstream(f func(*downstreamConn)) {
net.user.forEachDownstream(func(dc *downstreamConn) {
if dc.network == nil && !dc.isMultiUpstream {
return
}
if dc.network != nil && dc.network != net {
return
}
f(dc)
})
}
2020-06-03 08:28:31 -07:00
func (net *network) isStopped() bool {
select {
case <-net.stopped:
return true
default:
return false
}
}
func userIdent(u *User) string {
// The ident is a string we will send to upstream servers in clear-text.
// For privacy reasons, make sure it doesn't expose any meaningful user
// metadata. We just use the base64-encoded hashed ID, so that people don't
// start relying on the string being an integer or following a pattern.
var b [64]byte
binary.LittleEndian.PutUint64(b[:], uint64(u.ID))
h := sha256.Sum256(b[:])
return hex.EncodeToString(h[:16])
}
2020-03-16 03:18:41 -07:00
func (net *network) run() {
2021-05-26 01:49:52 -07:00
if !net.Enabled {
return
}
2020-03-16 03:18:41 -07:00
var lastTry time.Time
for {
2020-06-03 08:28:31 -07:00
if net.isStopped() {
return
}
if dur := time.Now().Sub(lastTry); dur < retryConnectDelay {
delay := retryConnectDelay - dur
2021-04-13 11:12:49 -07:00
net.logger.Printf("waiting %v before trying to reconnect to %q", delay.Truncate(time.Second), net.Addr)
2020-03-16 03:18:41 -07:00
time.Sleep(delay)
}
lastTry = time.Now()
uc, err := connectToUpstream(net)
if err != nil {
2021-04-13 11:12:49 -07:00
net.logger.Printf("failed to connect to upstream server %q: %v", net.Addr, err)
net.user.events <- eventUpstreamConnectionError{net, fmt.Errorf("failed to connect: %v", err)}
2020-03-16 03:18:41 -07:00
continue
}
if net.user.srv.Identd != nil {
net.user.srv.Identd.Store(uc.RemoteAddr().String(), uc.LocalAddr().String(), userIdent(&net.user.User))
}
net.user.srv.metrics.upstreams.Add(1)
2020-03-16 03:18:41 -07:00
uc.register()
2020-04-01 03:14:36 -07:00
if err := uc.runUntilRegistered(); err != nil {
text := err.Error()
if regErr, ok := err.(registrationError); ok {
text = string(regErr)
}
uc.logger.Printf("failed to register: %v", text)
net.user.events <- eventUpstreamConnectionError{net, fmt.Errorf("failed to register: %v", text)}
2020-04-01 03:14:36 -07:00
uc.Close()
continue
}
2020-03-16 03:18:41 -07:00
2020-06-03 08:28:31 -07:00
// TODO: this is racy with net.stopped. If the network is stopped
// before the user goroutine receives eventUpstreamConnected, the
// connection won't be closed.
net.user.events <- eventUpstreamConnected{uc}
if err := uc.readMessages(net.user.events); err != nil {
2020-03-16 03:18:41 -07:00
uc.logger.Printf("failed to handle messages: %v", err)
net.user.events <- eventUpstreamError{uc, fmt.Errorf("failed to handle messages: %v", err)}
2020-03-16 03:18:41 -07:00
}
uc.Close()
net.user.events <- eventUpstreamDisconnected{uc}
if net.user.srv.Identd != nil {
net.user.srv.Identd.Delete(uc.RemoteAddr().String(), uc.LocalAddr().String())
}
net.user.srv.metrics.upstreams.Add(-1)
2020-03-16 03:18:41 -07:00
}
}
func (net *network) stop() {
2020-06-03 08:28:31 -07:00
if !net.isStopped() {
close(net.stopped)
}
if net.conn != nil {
net.conn.Close()
}
}
func (net *network) detach(ch *Channel) {
if ch.Detached {
return
}
2021-04-13 11:12:49 -07:00
net.logger.Printf("detaching channel %q", ch.Name)
ch.Detached = true
if net.user.msgStore != nil {
nameCM := net.casemap(ch.Name)
lastID, err := net.user.msgStore.LastMsgID(&net.Network, nameCM, time.Now())
if err != nil {
2021-04-13 11:12:49 -07:00
net.logger.Printf("failed to get last message ID for channel %q: %v", ch.Name, err)
}
ch.DetachedInternalMsgID = lastID
}
if net.conn != nil {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch := net.conn.channels.Value(ch.Name)
if uch != nil {
uch.updateAutoDetach(0)
}
}
net.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.prefix(),
Command: "PART",
Params: []string{dc.marshalEntity(net, ch.Name), "Detach"},
})
})
}
func (net *network) attach(ch *Channel) {
if !ch.Detached {
return
}
2021-04-13 11:12:49 -07:00
net.logger.Printf("attaching channel %q", ch.Name)
detachedMsgID := ch.DetachedInternalMsgID
ch.Detached = false
ch.DetachedInternalMsgID = ""
var uch *upstreamChannel
if net.conn != nil {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch = net.conn.channels.Value(ch.Name)
net.conn.updateChannelAutoDetach(ch.Name)
}
net.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(&irc.Message{
Prefix: dc.prefix(),
Command: "JOIN",
Params: []string{dc.marshalEntity(net, ch.Name)},
})
if uch != nil {
forwardChannel(dc, uch)
}
if detachedMsgID != "" {
dc.sendTargetBacklog(context.TODO(), net, ch.Name, detachedMsgID)
2021-04-13 08:49:37 -07:00
}
})
}
func (net *network) deleteChannel(ctx context.Context, name string) error {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
ch := net.channels.Value(name)
if ch == nil {
return fmt.Errorf("unknown channel %q", name)
}
if net.conn != nil {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch := net.conn.channels.Value(ch.Name)
if uch != nil {
uch.updateAutoDetach(0)
}
}
if err := net.user.srv.db.DeleteChannel(ctx, ch.ID); err != nil {
return err
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
net.channels.Delete(name)
return nil
}
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
func (net *network) updateCasemapping(newCasemap casemapping) {
net.casemap = newCasemap
net.channels.SetCasemapping(newCasemap)
net.delivered.m.SetCasemapping(newCasemap)
if uc := net.conn; uc != nil {
uc.channels.SetCasemapping(newCasemap)
for _, entry := range uc.channels.innerMap {
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
uch := entry.value.(*upstreamChannel)
uch.Members.SetCasemapping(newCasemap)
}
uc.monitored.SetCasemapping(newCasemap)
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
}
net.forEachDownstream(func(dc *downstreamConn) {
dc.monitored.SetCasemapping(newCasemap)
})
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
}
func (net *network) storeClientDeliveryReceipts(clientName string) {
if !net.user.hasPersistentMsgStore() {
return
}
var receipts []DeliveryReceipt
net.delivered.ForEachTarget(func(target string) {
msgID := net.delivered.LoadID(target, clientName)
if msgID == "" {
return
}
receipts = append(receipts, DeliveryReceipt{
Target: target,
InternalMsgID: msgID,
})
})
if err := net.user.srv.db.StoreClientDeliveryReceipts(context.TODO(), net.ID, clientName, receipts); err != nil {
2021-04-13 11:12:49 -07:00
net.logger.Printf("failed to store delivery receipts for client %q: %v", clientName, err)
}
}
func (net *network) isHighlight(msg *irc.Message) bool {
if msg.Command != "PRIVMSG" && msg.Command != "NOTICE" {
return false
}
text := msg.Params[1]
nick := net.Nick
if net.conn != nil {
nick = net.conn.nick
}
// TODO: use case-mapping aware comparison here
return msg.Prefix.Name != nick && isHighlight(text, nick)
}
func (net *network) detachedMessageNeedsRelay(ch *Channel, msg *irc.Message) bool {
highlight := net.isHighlight(msg)
return ch.RelayDetached == FilterMessage || ((ch.RelayDetached == FilterHighlight || ch.RelayDetached == FilterDefault) && highlight)
}
2020-03-16 03:18:41 -07:00
type user struct {
User
srv *Server
logger Logger
2020-03-16 03:18:41 -07:00
events chan event
done chan struct{}
2020-03-16 03:18:41 -07:00
networks []*network
downstreamConns []*downstreamConn
msgStore messageStore
2020-03-16 03:18:41 -07:00
}
func newUser(srv *Server, record *User) *user {
logger := &prefixLogger{srv.Logger, fmt.Sprintf("user %q: ", record.Username)}
var msgStore messageStore
if logPath := srv.Config().LogPath; logPath != "" {
msgStore = newFSMessageStore(logPath, record.Username)
} else {
msgStore = newMemoryMessageStore()
}
2020-03-16 03:18:41 -07:00
return &user{
User: *record,
srv: srv,
logger: logger,
events: make(chan event, 64),
done: make(chan struct{}),
msgStore: msgStore,
2020-03-16 03:18:41 -07:00
}
}
func (u *user) forEachNetwork(f func(*network)) {
for _, network := range u.networks {
f(network)
}
}
func (u *user) forEachUpstream(f func(uc *upstreamConn)) {
for _, network := range u.networks {
if network.conn == nil {
2020-03-16 03:18:41 -07:00
continue
}
f(network.conn)
2020-03-16 03:18:41 -07:00
}
}
func (u *user) forEachDownstream(f func(dc *downstreamConn)) {
for _, dc := range u.downstreamConns {
f(dc)
}
}
func (u *user) getNetwork(name string) *network {
for _, network := range u.networks {
if network.Addr == name {
return network
}
if network.Name != "" && network.Name == name {
return network
}
2020-03-16 03:18:41 -07:00
}
return nil
}
func (u *user) getNetworkByID(id int64) *network {
for _, net := range u.networks {
if net.ID == id {
return net
}
}
return nil
}
2020-03-16 03:18:41 -07:00
func (u *user) run() {
defer func() {
if u.msgStore != nil {
if err := u.msgStore.Close(); err != nil {
u.logger.Printf("failed to close message store for user %q: %v", u.Username, err)
}
}
close(u.done)
}()
networks, err := u.srv.db.ListNetworks(context.TODO(), u.ID)
2020-03-16 03:18:41 -07:00
if err != nil {
u.logger.Printf("failed to list networks for user %q: %v", u.Username, err)
2020-03-16 03:18:41 -07:00
return
}
for _, record := range networks {
record := record
channels, err := u.srv.db.ListChannels(context.TODO(), record.ID)
if err != nil {
u.logger.Printf("failed to list channels for user %q, network %q: %v", u.Username, record.GetName(), err)
continue
}
network := newNetwork(u, &record, channels)
2020-03-16 03:18:41 -07:00
u.networks = append(u.networks, network)
if u.hasPersistentMsgStore() {
receipts, err := u.srv.db.ListDeliveryReceipts(context.TODO(), record.ID)
if err != nil {
u.logger.Printf("failed to load delivery receipts for user %q, network %q: %v", u.Username, network.GetName(), err)
return
}
for _, rcpt := range receipts {
network.delivered.StoreID(rcpt.Target, rcpt.Client, rcpt.InternalMsgID)
}
}
2020-03-16 03:18:41 -07:00
go network.run()
}
for e := range u.events {
switch e := e.(type) {
case eventUpstreamConnected:
uc := e.uc
uc.network.conn = uc
uc.updateAway()
uc.updateMonitor()
netIDStr := fmt.Sprintf("%v", uc.network.ID)
uc.forEachDownstream(func(dc *downstreamConn) {
dc.updateSupportedCaps()
if !dc.caps["soju.im/bouncer-networks"] {
sendServiceNOTICE(dc, fmt.Sprintf("connected to %s", uc.network.GetName()))
}
dc.updateNick()
dc.updateRealname()
dc.updateAccount()
})
u.forEachDownstream(func(dc *downstreamConn) {
if dc.caps["soju.im/bouncer-networks-notify"] {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: "BOUNCER",
Params: []string{"NETWORK", netIDStr, "state=connected"},
})
}
})
uc.network.lastError = nil
case eventUpstreamDisconnected:
u.handleUpstreamDisconnected(e.uc)
case eventUpstreamConnectionError:
net := e.net
stopped := false
select {
case <-net.stopped:
stopped = true
default:
}
if !stopped && (net.lastError == nil || net.lastError.Error() != e.err.Error()) {
net.forEachDownstream(func(dc *downstreamConn) {
sendServiceNOTICE(dc, fmt.Sprintf("failed connecting/registering to %s: %v", net.GetName(), e.err))
})
}
net.lastError = e.err
case eventUpstreamError:
uc := e.uc
uc.forEachDownstream(func(dc *downstreamConn) {
sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s: %v", uc.network.GetName(), e.err))
})
uc.network.lastError = e.err
case eventUpstreamMessage:
msg, uc := e.msg, e.uc
if uc.isClosed() {
uc.logger.Printf("ignoring message on closed connection: %v", msg)
break
}
if err := uc.handleMessage(msg); err != nil {
uc.logger.Printf("failed to handle message %q: %v", msg, err)
}
case eventChannelDetach:
uc, name := e.uc, e.name
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
c := uc.network.channels.Value(name)
if c == nil || c.Detached {
continue
}
uc.network.detach(c)
if err := uc.srv.db.StoreChannel(context.TODO(), uc.network.ID, c); err != nil {
u.logger.Printf("failed to store updated detached channel %q: %v", c.Name, err)
}
case eventDownstreamConnected:
dc := e.dc
if dc.network != nil {
dc.monitored.SetCasemapping(dc.network.casemap)
}
if err := dc.welcome(context.TODO()); err != nil {
dc.logger.Printf("failed to handle new registered connection: %v", err)
break
}
u.downstreamConns = append(u.downstreamConns, dc)
dc.forEachNetwork(func(network *network) {
if network.lastError != nil {
sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s: %v", network.GetName(), network.lastError))
}
})
u.forEachUpstream(func(uc *upstreamConn) {
uc.updateAway()
})
case eventDownstreamDisconnected:
dc := e.dc
for i := range u.downstreamConns {
if u.downstreamConns[i] == dc {
u.downstreamConns = append(u.downstreamConns[:i], u.downstreamConns[i+1:]...)
break
}
}
dc.forEachNetwork(func(net *network) {
net.storeClientDeliveryReceipts(dc.clientName)
})
u.forEachUpstream(func(uc *upstreamConn) {
uc.updateAway()
uc.updateMonitor()
})
case eventDownstreamMessage:
msg, dc := e.msg, e.dc
if dc.isClosed() {
dc.logger.Printf("ignoring message on closed connection: %v", msg)
break
}
err := dc.handleMessage(context.TODO(), msg)
if ircErr, ok := err.(ircError); ok {
ircErr.Message.Prefix = dc.srv.prefix()
dc.SendMessage(ircErr.Message)
} else if err != nil {
dc.logger.Printf("failed to handle message %q: %v", msg, err)
dc.Close()
}
case eventBroadcast:
msg := e.msg
u.forEachDownstream(func(dc *downstreamConn) {
dc.SendMessage(msg)
})
2021-10-12 00:11:14 -07:00
case eventUserUpdate:
// copy the user record because we'll mutate it
record := u.User
if e.password != nil {
record.Password = *e.password
}
if e.admin != nil {
record.Admin = *e.admin
}
e.done <- u.updateUser(context.TODO(), &record)
2021-10-12 00:11:14 -07:00
// If the password was updated, kill all downstream connections to
// force them to re-authenticate with the new credentials.
if e.password != nil {
u.forEachDownstream(func(dc *downstreamConn) {
dc.Close()
})
}
2020-08-03 09:45:13 -07:00
case eventStop:
u.forEachDownstream(func(dc *downstreamConn) {
dc.Close()
})
for _, n := range u.networks {
n.stop()
n.delivered.ForEachClient(func(clientName string) {
n.storeClientDeliveryReceipts(clientName)
})
2020-08-03 09:45:13 -07:00
}
return
default:
panic(fmt.Sprintf("received unknown event type: %T", e))
}
}
2020-03-16 03:18:41 -07:00
}
func (u *user) handleUpstreamDisconnected(uc *upstreamConn) {
uc.network.conn = nil
uc.endPendingCommands()
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
for _, entry := range uc.channels.innerMap {
uch := entry.value.(*upstreamChannel)
uch.updateAutoDetach(0)
}
netIDStr := fmt.Sprintf("%v", uc.network.ID)
uc.forEachDownstream(func(dc *downstreamConn) {
dc.updateSupportedCaps()
})
// If the network has been removed, don't send a state change notification
found := false
for _, net := range u.networks {
if net == uc.network {
found = true
break
}
}
if !found {
return
}
u.forEachDownstream(func(dc *downstreamConn) {
if dc.caps["soju.im/bouncer-networks-notify"] {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: "BOUNCER",
Params: []string{"NETWORK", netIDStr, "state=disconnected"},
})
}
})
if uc.network.lastError == nil {
uc.forEachDownstream(func(dc *downstreamConn) {
if !dc.caps["soju.im/bouncer-networks"] {
sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s", uc.network.GetName()))
}
})
}
}
func (u *user) addNetwork(network *network) {
u.networks = append(u.networks, network)
go network.run()
}
func (u *user) removeNetwork(network *network) {
network.stop()
u.forEachDownstream(func(dc *downstreamConn) {
if dc.network != nil && dc.network == network {
dc.Close()
}
})
for i, net := range u.networks {
if net == network {
u.networks = append(u.networks[:i], u.networks[i+1:]...)
return
}
}
panic("tried to remove a non-existing network")
}
func (u *user) checkNetwork(record *Network) error {
for _, net := range u.networks {
if net.GetName() == record.GetName() && net.ID != record.ID {
return fmt.Errorf("a network with the name %q already exists", record.GetName())
}
}
return nil
}
func (u *user) createNetwork(ctx context.Context, record *Network) (*network, error) {
if record.ID != 0 {
panic("tried creating an already-existing network")
}
if err := u.checkNetwork(record); err != nil {
return nil, err
}
if max := u.srv.Config().MaxUserNetworks; max >= 0 && len(u.networks) >= max {
2021-10-07 11:43:10 -07:00
return nil, fmt.Errorf("maximum number of networks reached")
}
network := newNetwork(u, record, nil)
err := u.srv.db.StoreNetwork(ctx, u.ID, &network.Network)
2020-03-16 03:18:41 -07:00
if err != nil {
return nil, err
}
u.addNetwork(network)
idStr := fmt.Sprintf("%v", network.ID)
attrs := getNetworkAttrs(network)
u.forEachDownstream(func(dc *downstreamConn) {
if dc.caps["soju.im/bouncer-networks-notify"] {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: "BOUNCER",
Params: []string{"NETWORK", idStr, attrs.String()},
})
}
})
2020-03-16 03:18:41 -07:00
return network, nil
}
func (u *user) updateNetwork(ctx context.Context, record *Network) (*network, error) {
if record.ID == 0 {
panic("tried updating a new network")
}
// If the realname is reset to the default, just wipe the per-network
// setting
if record.Realname == u.Realname {
record.Realname = ""
}
if err := u.checkNetwork(record); err != nil {
return nil, err
}
network := u.getNetworkByID(record.ID)
if network == nil {
panic("tried updating a non-existing network")
}
if err := u.srv.db.StoreNetwork(ctx, u.ID, record); err != nil {
return nil, err
}
// Most network changes require us to re-connect to the upstream server
Implement casemapping TL;DR: supports for casemapping, now logs are saved in casemapped/canonical/tolower form (eg. in the #channel directory instead of #Channel... or something) == What is casemapping? == see <https://modern.ircdocs.horse/#casemapping-parameter> == Casemapping and multi-upstream == Since each upstream does not necessarily use the same casemapping, and since casemappings cannot coexist [0], 1. soju must also update the database accordingly to upstreams' casemapping, otherwise it will end up inconsistent, 2. soju must "normalize" entity names and expose only one casemapping that is a subset of all supported casemappings (here, ascii). [0] On some upstreams, "emersion[m]" and "emersion{m}" refer to the same user (upstreams that advertise rfc1459 for example), while on others (upstreams that advertise ascii) they don't. Once upstream's casemapping is known (default to rfc1459), entity names in map keys are made into casemapped form, for upstreamConn, upstreamChannel and network. downstreamConn advertises "CASEMAPPING=ascii", and always casemap map keys with ascii. Some functions require the caller to casemap their argument (to avoid needless calls to casemapping functions). == Message forwarding and casemapping == downstream message handling (joins and parts basically): When relaying entity names from downstreams to upstreams, soju uses the upstream casemapping, in order to not get in the way of the user. This does not brings any issue, as long as soju replies with the ascii casemapping in mind (solves point 1.). marshalEntity/marshalUserPrefix: When relaying entity names from upstreams with non-ascii casemappings, soju *partially* casemap them: it only change the case of characters which are not ascii letters. ASCII case is thus kept intact, while special symbols like []{} are the same every time soju sends them to downstreams (solves point 2.). == Casemapping changes == Casemapping changes are not fully supported by this patch and will result in loss of history. This is a limitation of the protocol and should be solved by the RENAME spec.
2021-03-16 02:00:34 -07:00
channels := make([]Channel, 0, network.channels.Len())
for _, entry := range network.channels.innerMap {
ch := entry.value.(*Channel)
channels = append(channels, *ch)
}
updatedNetwork := newNetwork(u, record, channels)
// If we're currently connected, disconnect and perform the necessary
// bookkeeping
if network.conn != nil {
network.stop()
// Note: this will set network.conn to nil
u.handleUpstreamDisconnected(network.conn)
}
// Patch downstream connections to use our fresh updated network
u.forEachDownstream(func(dc *downstreamConn) {
if dc.network != nil && dc.network == network {
dc.network = updatedNetwork
}
})
// We need to remove the network after patching downstream connections,
// otherwise they'll get closed
u.removeNetwork(network)
// The filesystem message store needs to be notified whenever the network
// is renamed
fsMsgStore, isFS := u.msgStore.(*fsMessageStore)
if isFS && updatedNetwork.GetName() != network.GetName() {
if err := fsMsgStore.RenameNetwork(&network.Network, &updatedNetwork.Network); err != nil {
network.logger.Printf("failed to update FS message store network name to %q: %v", updatedNetwork.GetName(), err)
}
}
// This will re-connect to the upstream server
u.addNetwork(updatedNetwork)
// TODO: only broadcast attributes that have changed
idStr := fmt.Sprintf("%v", updatedNetwork.ID)
attrs := getNetworkAttrs(updatedNetwork)
u.forEachDownstream(func(dc *downstreamConn) {
if dc.caps["soju.im/bouncer-networks-notify"] {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: "BOUNCER",
Params: []string{"NETWORK", idStr, attrs.String()},
})
}
})
return updatedNetwork, nil
}
func (u *user) deleteNetwork(ctx context.Context, id int64) error {
network := u.getNetworkByID(id)
if network == nil {
panic("tried deleting a non-existing network")
}
if err := u.srv.db.DeleteNetwork(ctx, network.ID); err != nil {
return err
}
u.removeNetwork(network)
idStr := fmt.Sprintf("%v", network.ID)
u.forEachDownstream(func(dc *downstreamConn) {
if dc.caps["soju.im/bouncer-networks-notify"] {
dc.SendMessage(&irc.Message{
Prefix: dc.srv.prefix(),
Command: "BOUNCER",
Params: []string{"NETWORK", idStr, "*"},
})
}
})
return nil
}
func (u *user) updateUser(ctx context.Context, record *User) error {
if u.ID != record.ID {
panic("ID mismatch when updating user")
}
2020-08-03 09:45:13 -07:00
realnameUpdated := u.Realname != record.Realname
if err := u.srv.db.StoreUser(ctx, record); err != nil {
return fmt.Errorf("failed to update user %q: %v", u.Username, err)
}
u.User = *record
if realnameUpdated {
// Re-connect to networks which use the default realname
var needUpdate []Network
u.forEachNetwork(func(net *network) {
if net.Realname == "" {
needUpdate = append(needUpdate, net.Network)
}
})
var netErr error
for _, net := range needUpdate {
if _, err := u.updateNetwork(ctx, &net); err != nil {
netErr = err
}
}
if netErr != nil {
return netErr
}
}
return nil
}
2020-08-03 09:45:13 -07:00
func (u *user) stop() {
u.events <- eventStop{}
<-u.done
2020-08-03 09:45:13 -07:00
}
func (u *user) hasPersistentMsgStore() bool {
if u.msgStore == nil {
return false
}
_, isMem := u.msgStore.(*memoryMessageStore)
return !isMem
}
// localAddrForHost returns the local address to use when connecting to host.
// A nil address is returned when the OS should automatically pick one.
func (u *user) localTCPAddrForHost(host string) (*net.TCPAddr, error) {
upstreamUserIPs := u.srv.Config().UpstreamUserIPs
if len(upstreamUserIPs) == 0 {
return nil, nil
}
ips, err := net.LookupIP(host)
if err != nil {
return nil, err
}
wantIPv6 := false
for _, ip := range ips {
if ip.To4() == nil {
wantIPv6 = true
break
}
}
var ipNet *net.IPNet
for _, in := range upstreamUserIPs {
if wantIPv6 == (in.IP.To4() == nil) {
ipNet = in
break
}
}
if ipNet == nil {
return nil, nil
}
var ipInt big.Int
ipInt.SetBytes(ipNet.IP)
ipInt.Add(&ipInt, big.NewInt(u.ID+1))
ip := net.IP(ipInt.Bytes())
if !ipNet.Contains(ip) {
return nil, fmt.Errorf("IP network %v too small", ipNet)
}
return &net.TCPAddr{IP: ip}, nil
}