package soju import ( "context" "crypto/sha256" "encoding/binary" "encoding/hex" "errors" "fmt" "math/big" "net" "sort" "strings" "sync/atomic" "time" "git.sr.ht/~emersion/soju/xirc" "github.com/SherClockHolmes/webpush-go" "gopkg.in/irc.v4" "git.sr.ht/~emersion/soju/database" "git.sr.ht/~emersion/soju/msgstore" ) type event interface{} type eventUpstreamMessage struct { msg *irc.Message uc *upstreamConn } type eventUpstreamConnectionError struct { net *network err error } type eventUpstreamConnected struct { uc *upstreamConn } type eventUpstreamDisconnected struct { uc *upstreamConn } type eventUpstreamError struct { uc *upstreamConn err error } type eventDownstreamMessage struct { msg *irc.Message dc *downstreamConn } type eventDownstreamConnected struct { dc *downstreamConn } type eventDownstreamDisconnected struct { dc *downstreamConn } type eventChannelDetach struct { uc *upstreamConn name string } type eventBroadcast struct { msg *irc.Message } type eventStop struct{} type eventUserUpdate struct { password *string admin *bool enabled *bool done chan error } type eventTryRegainNick struct { uc *upstreamConn nick string } type eventUserRun struct { params []string print chan string ret chan error } type deliveredClientMap map[string]string // client name -> msg ID type deliveredStore struct { m deliveredCasemapMap } func newDeliveredStore() deliveredStore { return deliveredStore{deliveredCasemapMap{newCasemapMap()}} } func (ds deliveredStore) HasTarget(target string) bool { return ds.m.Get(target) != nil } func (ds deliveredStore) LoadID(target, clientName string) string { clients := ds.m.Get(target) if clients == nil { return "" } return clients[clientName] } func (ds deliveredStore) StoreID(target, clientName, msgID string) { clients := ds.m.Get(target) if clients == nil { clients = make(deliveredClientMap) ds.m.Set(target, clients) } clients[clientName] = msgID } func (ds deliveredStore) ForEachTarget(f func(target string)) { ds.m.ForEach(func(name string, _ deliveredClientMap) { f(name) }) } func (ds deliveredStore) ForEachClient(f func(clientName string)) { clients := make(map[string]struct{}) ds.m.ForEach(func(name string, delivered deliveredClientMap) { for clientName := range delivered { clients[clientName] = struct{}{} } }) for clientName := range clients { f(clientName) } } type network struct { database.Network user *user logger Logger stopped chan struct{} conn *upstreamConn channels channelCasemapMap delivered deliveredStore pushTargets pushTargetCasemapMap lastError error casemap casemapping } func newNetwork(user *user, record *database.Network, channels []database.Channel) *network { logger := &prefixLogger{user.logger, fmt.Sprintf("network %q: ", record.GetName())} m := channelCasemapMap{newCasemapMap()} for _, ch := range channels { ch := ch m.Set(&ch) } return &network{ Network: *record, user: user, logger: logger, stopped: make(chan struct{}), channels: m, delivered: newDeliveredStore(), pushTargets: pushTargetCasemapMap{newCasemapMap()}, casemap: casemapRFC1459, } } func (net *network) forEachDownstream(f func(*downstreamConn)) { for _, dc := range net.user.downstreamConns { if dc.network != net { continue } f(dc) } } func (net *network) isStopped() bool { select { case <-net.stopped: return true default: return false } } func (net *network) equalCasemap(a, b string) bool { return net.casemap(a) == net.casemap(b) } func userIdent(u *database.User) string { // The ident is a string we will send to upstream servers in clear-text. // For privacy reasons, make sure it doesn't expose any meaningful user // metadata. We just use the base64-encoded hashed ID, so that people don't // start relying on the string being an integer or following a pattern. var b [64]byte binary.LittleEndian.PutUint64(b[:], uint64(u.ID)) h := sha256.Sum256(b[:]) return hex.EncodeToString(h[:16]) } func (net *network) runConn(ctx context.Context) error { net.user.srv.metrics.upstreams.Add(1) defer net.user.srv.metrics.upstreams.Add(-1) ctx, cancel := context.WithTimeout(ctx, time.Minute) defer cancel() uc, err := connectToUpstream(ctx, net) if err != nil { return fmt.Errorf("failed to connect: %w", err) } defer uc.Close() if net.user.srv.Identd != nil { net.user.srv.Identd.Store(uc.RemoteAddr().String(), uc.LocalAddr().String(), userIdent(&net.user.User)) defer net.user.srv.Identd.Delete(uc.RemoteAddr().String(), uc.LocalAddr().String()) } // TODO: this is racy, we're not running in the user goroutine yet // uc.register accesses user/network DB records uc.register(ctx) if err := uc.runUntilRegistered(ctx); err != nil { return fmt.Errorf("failed to register: %w", err) } // TODO: this is racy with net.stopped. If the network is stopped // before the user goroutine receives eventUpstreamConnected, the // connection won't be closed. net.user.events <- eventUpstreamConnected{uc} defer func() { net.user.events <- eventUpstreamDisconnected{uc} }() if err := uc.readMessages(net.user.events); err != nil { return fmt.Errorf("failed to handle messages: %w", err) } return nil } func (net *network) run() { if !net.user.Enabled || !net.Enabled { return } var lastTry time.Time backoff := newBackoffer(retryConnectMinDelay, retryConnectMaxDelay, retryConnectJitter) for { if net.isStopped() { return } delay := backoff.Next() - time.Now().Sub(lastTry) if delay > 0 { net.logger.Printf("waiting %v before trying to reconnect to %q", delay.Truncate(time.Second), net.Addr) time.Sleep(delay) } lastTry = time.Now() if err := net.runConn(context.TODO()); err != nil { text := err.Error() temp := true var regErr registrationError if errors.As(err, ®Err) { text = "failed to register: " + regErr.Reason() temp = regErr.Temporary() } net.logger.Printf("connection error to %q: %v", net.Addr, text) net.user.events <- eventUpstreamConnectionError{net, fmt.Errorf("connection error: %v", err)} net.user.srv.metrics.upstreamConnectErrorsTotal.Inc() if !temp { return } } else { backoff.Reset() } } } func (net *network) stop() { if !net.isStopped() { close(net.stopped) } if net.conn != nil { net.conn.Close() } } func (net *network) detach(ch *database.Channel) { if ch.Detached { return } net.logger.Printf("detaching channel %q", ch.Name) ch.Detached = true if net.user.msgStore != nil { nameCM := net.casemap(ch.Name) lastID, err := net.user.msgStore.LastMsgID(&net.Network, nameCM, time.Now()) if err != nil { net.logger.Printf("failed to get last message ID for channel %q: %v", ch.Name, err) } ch.DetachedInternalMsgID = lastID } if net.conn != nil { uch := net.conn.channels.Get(ch.Name) if uch != nil { uch.updateAutoDetach(0) } } net.forEachDownstream(func(dc *downstreamConn) { dc.SendMessage(&irc.Message{ Prefix: dc.prefix(), Command: "PART", Params: []string{ch.Name, "Detach"}, }) }) } func (net *network) attach(ctx context.Context, ch *database.Channel) { if !ch.Detached { return } net.logger.Printf("attaching channel %q", ch.Name) detachedMsgID := ch.DetachedInternalMsgID ch.Detached = false ch.DetachedInternalMsgID = "" var uch *upstreamChannel if net.conn != nil { uch = net.conn.channels.Get(ch.Name) net.conn.updateChannelAutoDetach(ch.Name) } net.forEachDownstream(func(dc *downstreamConn) { dc.SendMessage(&irc.Message{ Prefix: dc.prefix(), Command: "JOIN", Params: []string{ch.Name}, }) if uch != nil { forwardChannel(ctx, dc, uch) } if detachedMsgID != "" { dc.sendTargetBacklog(ctx, net, ch.Name, detachedMsgID) } }) } func (net *network) deleteChannel(ctx context.Context, name string) error { ch := net.channels.Get(name) if ch == nil { return fmt.Errorf("unknown channel %q", name) } if net.conn != nil { uch := net.conn.channels.Get(ch.Name) if uch != nil { uch.updateAutoDetach(0) } } if err := net.user.srv.db.DeleteChannel(ctx, ch.ID); err != nil { return err } net.channels.Del(name) return nil } func (net *network) updateCasemapping(newCasemap casemapping) { net.casemap = newCasemap net.channels.SetCasemapping(newCasemap) net.delivered.m.SetCasemapping(newCasemap) net.pushTargets.SetCasemapping(newCasemap) if uc := net.conn; uc != nil { uc.channels.SetCasemapping(newCasemap) uc.channels.ForEach(func(uch *upstreamChannel) { uch.Members.SetCasemapping(newCasemap) }) uc.users.SetCasemapping(newCasemap) uc.monitored.SetCasemapping(newCasemap) } net.forEachDownstream(func(dc *downstreamConn) { dc.monitored.SetCasemapping(newCasemap) }) } func (net *network) storeClientDeliveryReceipts(ctx context.Context, clientName string) { if !net.user.hasPersistentMsgStore() { return } var receipts []database.DeliveryReceipt net.delivered.ForEachTarget(func(target string) { msgID := net.delivered.LoadID(target, clientName) if msgID == "" { return } receipts = append(receipts, database.DeliveryReceipt{ Target: target, InternalMsgID: msgID, }) }) if err := net.user.srv.db.StoreClientDeliveryReceipts(ctx, net.ID, clientName, receipts); err != nil { net.logger.Printf("failed to store delivery receipts for client %q: %v", clientName, err) } } func (net *network) isHighlight(msg *irc.Message) bool { if msg.Command != "PRIVMSG" && msg.Command != "NOTICE" { return false } text := msg.Params[1] nick := net.Nick if net.conn != nil { nick = net.conn.nick } // TODO: use case-mapping aware comparison here return msg.Prefix.Name != nick && isHighlight(text, nick) } func (net *network) detachedMessageNeedsRelay(ch *database.Channel, msg *irc.Message) bool { highlight := net.isHighlight(msg) return ch.RelayDetached == database.FilterMessage || ((ch.RelayDetached == database.FilterHighlight || ch.RelayDetached == database.FilterDefault) && highlight) } func (net *network) autoSaveSASLPlain(ctx context.Context, username, password string) { // User may have e.g. EXTERNAL mechanism configured. We do not want to // automatically erase the key pair or any other credentials. if net.SASL.Mechanism != "" && net.SASL.Mechanism != "PLAIN" { return } net.logger.Printf("auto-saving SASL PLAIN credentials with username %q", username) net.SASL.Mechanism = "PLAIN" net.SASL.Plain.Username = username net.SASL.Plain.Password = password if err := net.user.srv.db.StoreNetwork(ctx, net.user.ID, &net.Network); err != nil { net.logger.Printf("failed to save SASL PLAIN credentials: %v", err) } } // broadcastWebPush broadcasts a Web Push message for the given IRC message. // // Broadcasting the message to all Web Push endpoints might take a while, so // callers should call this function in a new goroutine. func (net *network) broadcastWebPush(msg *irc.Message) { ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute) defer cancel() subs, err := net.user.srv.db.ListWebPushSubscriptions(ctx, net.user.ID, net.ID) if err != nil { net.logger.Printf("failed to list Web push subscriptions: %v", err) return } for _, sub := range subs { err := net.user.srv.sendWebPush(ctx, &webpush.Subscription{ Endpoint: sub.Endpoint, Keys: webpush.Keys{ Auth: sub.Keys.Auth, P256dh: sub.Keys.P256DH, }, }, sub.Keys.VAPID, msg) if err != nil { net.logger.Printf("failed to send Web push notification to endpoint %q: %v", sub.Endpoint, err) } if err == errWebPushSubscriptionExpired { if err := net.user.srv.db.DeleteWebPushSubscription(ctx, sub.ID); err != nil { net.logger.Printf("failed to delete expired Web Push subscription: %v", err) } } } } type user struct { database.User srv *Server logger Logger events chan event done chan struct{} numDownstreamConns atomic.Int64 networks []*network downstreamConns []*downstreamConn msgStore msgstore.Store } func newUser(srv *Server, record *database.User) *user { logger := &prefixLogger{srv.Logger, fmt.Sprintf("user %q: ", record.Username)} var msgStore msgstore.Store if logPath := srv.Config().LogPath; logPath != "" { msgStore = msgstore.NewFSStore(logPath, record) } else { msgStore = msgstore.NewMemoryStore() } return &user{ User: *record, srv: srv, logger: logger, events: make(chan event, 64), done: make(chan struct{}), msgStore: msgStore, } } func (u *user) forEachUpstream(f func(uc *upstreamConn)) { for _, network := range u.networks { if network.conn == nil { continue } f(network.conn) } } func (u *user) getNetwork(name string) *network { for _, network := range u.networks { if network.Addr == name { return network } if network.Name != "" && network.Name == name { return network } } return nil } func (u *user) getNetworkByID(id int64) *network { for _, net := range u.networks { if net.ID == id { return net } } return nil } func (u *user) run() { defer func() { if u.msgStore != nil { if err := u.msgStore.Close(); err != nil { u.logger.Printf("failed to close message store for user %q: %v", u.Username, err) } } close(u.done) }() networks, err := u.srv.db.ListNetworks(context.TODO(), u.ID) if err != nil { u.logger.Printf("failed to list networks for user %q: %v", u.Username, err) return } sort.Slice(networks, func(i, j int) bool { return networks[i].ID < networks[j].ID }) for _, record := range networks { record := record channels, err := u.srv.db.ListChannels(context.TODO(), record.ID) if err != nil { u.logger.Printf("failed to list channels for user %q, network %q: %v", u.Username, record.GetName(), err) continue } network := newNetwork(u, &record, channels) u.networks = append(u.networks, network) if u.hasPersistentMsgStore() { receipts, err := u.srv.db.ListDeliveryReceipts(context.TODO(), record.ID) if err != nil { u.logger.Printf("failed to load delivery receipts for user %q, network %q: %v", u.Username, network.GetName(), err) return } for _, rcpt := range receipts { network.delivered.StoreID(rcpt.Target, rcpt.Client, rcpt.InternalMsgID) } } go network.run() } for e := range u.events { switch e := e.(type) { case eventUpstreamConnected: uc := e.uc uc.network.conn = uc uc.updateAway() uc.updateMonitor() uc.forEachDownstream(func(dc *downstreamConn) { dc.updateSupportedCaps() if !dc.caps.IsEnabled("soju.im/bouncer-networks") { sendServiceNOTICE(dc, fmt.Sprintf("connected to %s", uc.network.GetName())) } dc.updateNick() dc.updateHost() dc.updateRealname() dc.updateAccount() }) u.notifyBouncerNetworkState(uc.network.ID, irc.Tags{ "state": "connected", "error": "", }) uc.network.lastError = nil case eventUpstreamDisconnected: u.handleUpstreamDisconnected(e.uc) case eventUpstreamConnectionError: net := e.net stopped := false select { case <-net.stopped: stopped = true default: } if !stopped && (net.lastError == nil || net.lastError.Error() != e.err.Error()) { net.forEachDownstream(func(dc *downstreamConn) { sendServiceNOTICE(dc, fmt.Sprintf("failed connecting/registering to %s: %v", net.GetName(), e.err)) }) } net.lastError = e.err u.notifyBouncerNetworkState(net.ID, irc.Tags{ "error": net.lastError.Error(), }) case eventUpstreamError: uc := e.uc uc.forEachDownstream(func(dc *downstreamConn) { sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s: %v", uc.network.GetName(), e.err)) }) uc.network.lastError = e.err u.notifyBouncerNetworkState(uc.network.ID, irc.Tags{ "error": uc.network.lastError.Error(), }) case eventUpstreamMessage: msg, uc := e.msg, e.uc if uc.isClosed() { uc.logger.Printf("ignoring message on closed connection: %v", msg) break } if err := uc.handleMessage(context.TODO(), msg); err != nil { uc.logger.Printf("failed to handle message %q: %v", msg, err) } case eventChannelDetach: uc, name := e.uc, e.name c := uc.network.channels.Get(name) if c == nil || c.Detached { continue } uc.network.detach(c) if err := uc.srv.db.StoreChannel(context.TODO(), uc.network.ID, c); err != nil { u.logger.Printf("failed to store updated detached channel %q: %v", c.Name, err) } case eventDownstreamConnected: dc := e.dc ctx := context.TODO() if dc.network != nil { dc.monitored.SetCasemapping(dc.network.casemap) } if !u.Enabled && u.srv.Config().EnableUsersOnAuth { record := u.User record.Enabled = true if err := u.updateUser(ctx, &record); err != nil { dc.logger.Printf("failed to enable user after successful authentication: %v", err) } } if !u.Enabled { dc.SendMessage(&irc.Message{ Command: "ERROR", Params: []string{"This bouncer account is disabled"}, }) // TODO: close dc after the error message is sent break } if err := dc.welcome(ctx); err != nil { if ircErr, ok := err.(ircError); ok { msg := ircErr.Message.Copy() msg.Prefix = dc.srv.prefix() dc.SendMessage(msg) } else { dc.SendMessage(&irc.Message{ Command: "ERROR", Params: []string{"Internal server error"}, }) } dc.logger.Printf("failed to handle new registered connection: %v", err) // TODO: close dc after the error message is sent break } u.downstreamConns = append(u.downstreamConns, dc) u.numDownstreamConns.Add(1) dc.forEachNetwork(func(network *network) { if network.lastError != nil { sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s: %v", network.GetName(), network.lastError)) } }) u.forEachUpstream(func(uc *upstreamConn) { uc.updateAway() }) u.bumpDownstreamInteractionTime(ctx) case eventDownstreamDisconnected: dc := e.dc ctx := context.TODO() for i := range u.downstreamConns { if u.downstreamConns[i] == dc { u.downstreamConns = append(u.downstreamConns[:i], u.downstreamConns[i+1:]...) u.numDownstreamConns.Add(-1) break } } dc.forEachNetwork(func(net *network) { net.storeClientDeliveryReceipts(ctx, dc.clientName) }) u.forEachUpstream(func(uc *upstreamConn) { uc.cancelPendingCommandsByDownstreamID(dc.id) uc.updateAway() uc.updateMonitor() }) u.bumpDownstreamInteractionTime(ctx) case eventDownstreamMessage: msg, dc := e.msg, e.dc if dc.isClosed() { dc.logger.Printf("ignoring message on closed connection: %v", msg) break } err := dc.handleMessage(context.TODO(), msg) if ircErr, ok := err.(ircError); ok { ircErr.Message.Prefix = dc.srv.prefix() dc.SendMessage(ircErr.Message) } else if err != nil { dc.logger.Printf("failed to handle message %q: %v", msg, err) dc.Close() } case eventBroadcast: msg := e.msg for _, dc := range u.downstreamConns { dc.SendMessage(msg) } case eventUserUpdate: // copy the user record because we'll mutate it record := u.User if e.password != nil { record.Password = *e.password } if e.admin != nil { record.Admin = *e.admin } if e.enabled != nil { record.Enabled = *e.enabled } e.done <- u.updateUser(context.TODO(), &record) // If the password was updated, kill all downstream connections to // force them to re-authenticate with the new credentials. if e.password != nil { for _, dc := range u.downstreamConns { dc.Close() } } case eventTryRegainNick: e.uc.tryRegainNick(e.nick) case eventUserRun: ctx := context.TODO() err := handleServiceCommand(&serviceContext{ Context: ctx, user: u, srv: u.srv, admin: u.Admin, print: func(text string) { // Avoid blocking on e.print in case our context is canceled. // This is a no-op right now because we use context.TODO(), // but might be useful later when we add timeouts. select { case <-ctx.Done(): case e.print <- text: } }, }, e.params) select { case <-ctx.Done(): case e.ret <- err: } case eventStop: for _, dc := range u.downstreamConns { dc.Close() } for _, n := range u.networks { n.stop() n.delivered.ForEachClient(func(clientName string) { n.storeClientDeliveryReceipts(context.TODO(), clientName) }) } return default: panic(fmt.Sprintf("received unknown event type: %T", e)) } } } func (u *user) handleUpstreamDisconnected(uc *upstreamConn) { uc.network.conn = nil uc.stopRegainNickTimer() uc.abortPendingCommands() uc.channels.ForEach(func(uch *upstreamChannel) { uch.updateAutoDetach(0) }) uc.forEachDownstream(func(dc *downstreamConn) { dc.updateSupportedCaps() }) // If the network has been removed, don't send a state change notification found := false for _, net := range u.networks { if net == uc.network { found = true break } } if !found { return } u.notifyBouncerNetworkState(uc.network.ID, irc.Tags{"state": "disconnected"}) if uc.network.lastError == nil { uc.forEachDownstream(func(dc *downstreamConn) { if !dc.caps.IsEnabled("soju.im/bouncer-networks") { sendServiceNOTICE(dc, fmt.Sprintf("disconnected from %s", uc.network.GetName())) } }) } } func (u *user) notifyBouncerNetworkState(netID int64, attrs irc.Tags) { netIDStr := fmt.Sprintf("%v", netID) for _, dc := range u.downstreamConns { if dc.caps.IsEnabled("soju.im/bouncer-networks-notify") { dc.SendMessage(&irc.Message{ Prefix: dc.srv.prefix(), Command: "BOUNCER", Params: []string{"NETWORK", netIDStr, attrs.String()}, }) } } } func (u *user) addNetwork(network *network) { u.networks = append(u.networks, network) sort.Slice(u.networks, func(i, j int) bool { return u.networks[i].ID < u.networks[j].ID }) go network.run() } func (u *user) removeNetwork(network *network) { network.stop() for _, dc := range u.downstreamConns { if dc.network != nil && dc.network == network { dc.Close() } } for i, net := range u.networks { if net == network { u.networks = append(u.networks[:i], u.networks[i+1:]...) return } } panic("tried to remove a non-existing network") } func (u *user) checkNetwork(record *database.Network) error { url, err := record.URL() if err != nil { return err } if url.User != nil { return fmt.Errorf("%v:// URL must not have username and password information", url.Scheme) } if url.RawQuery != "" { return fmt.Errorf("%v:// URL must not have query values", url.Scheme) } if url.Fragment != "" { return fmt.Errorf("%v:// URL must not have a fragment", url.Scheme) } switch url.Scheme { case "ircs", "irc+insecure": if url.Host == "" { return fmt.Errorf("%v:// URL must have a host", url.Scheme) } if url.Path != "" { return fmt.Errorf("%v:// URL must not have a path", url.Scheme) } case "irc+unix", "unix": if url.Host != "" { return fmt.Errorf("%v:// URL must not have a host", url.Scheme) } if url.Path == "" { return fmt.Errorf("%v:// URL must have a path", url.Scheme) } default: return fmt.Errorf("unknown URL scheme %q", url.Scheme) } if record.GetName() == "" { return fmt.Errorf("network name cannot be empty") } if strings.HasPrefix(record.GetName(), "-") { // Can be mixed up with flags when sending commands to the service return fmt.Errorf("network name cannot start with a dash character") } for _, net := range u.networks { if net.GetName() == record.GetName() && net.ID != record.ID { return fmt.Errorf("a network with the name %q already exists", record.GetName()) } } return nil } func (u *user) createNetwork(ctx context.Context, record *database.Network) (*network, error) { if record.ID != 0 { panic("tried creating an already-existing network") } if err := u.checkNetwork(record); err != nil { return nil, err } if max := u.srv.Config().MaxUserNetworks; max >= 0 && len(u.networks) >= max { return nil, fmt.Errorf("maximum number of networks reached") } network := newNetwork(u, record, nil) err := u.srv.db.StoreNetwork(ctx, u.ID, &network.Network) if err != nil { return nil, err } u.addNetwork(network) attrs := getNetworkAttrs(network) u.notifyBouncerNetworkState(network.ID, attrs) return network, nil } func (u *user) updateNetwork(ctx context.Context, record *database.Network) (*network, error) { if record.ID == 0 { panic("tried updating a new network") } // If the nickname/realname is reset to the default, just wipe the // per-network setting if record.Nick == u.Nick { record.Nick = "" } if record.Realname == u.Realname { record.Realname = "" } if err := u.checkNetwork(record); err != nil { return nil, err } network := u.getNetworkByID(record.ID) if network == nil { panic("tried updating a non-existing network") } if err := u.srv.db.StoreNetwork(ctx, u.ID, record); err != nil { return nil, err } // Most network changes require us to re-connect to the upstream server channels := make([]database.Channel, 0, network.channels.Len()) network.channels.ForEach(func(ch *database.Channel) { channels = append(channels, *ch) }) updatedNetwork := newNetwork(u, record, channels) // If we're currently connected, disconnect and perform the necessary // bookkeeping if network.conn != nil { network.stop() // Note: this will set network.conn to nil u.handleUpstreamDisconnected(network.conn) } // Patch downstream connections to use our fresh updated network for _, dc := range u.downstreamConns { if dc.network != nil && dc.network == network { dc.network = updatedNetwork } } // We need to remove the network after patching downstream connections, // otherwise they'll get closed u.removeNetwork(network) // The filesystem message store needs to be notified whenever the network // is renamed renameNetMsgStore, ok := u.msgStore.(msgstore.RenameNetworkStore) if ok && updatedNetwork.GetName() != network.GetName() { if err := renameNetMsgStore.RenameNetwork(&network.Network, &updatedNetwork.Network); err != nil { network.logger.Printf("failed to update message store network name to %q: %v", updatedNetwork.GetName(), err) } } // This will re-connect to the upstream server u.addNetwork(updatedNetwork) // TODO: only broadcast attributes that have changed attrs := getNetworkAttrs(updatedNetwork) u.notifyBouncerNetworkState(updatedNetwork.ID, attrs) return updatedNetwork, nil } func (u *user) deleteNetwork(ctx context.Context, id int64) error { network := u.getNetworkByID(id) if network == nil { panic("tried deleting a non-existing network") } if err := u.srv.db.DeleteNetwork(ctx, network.ID); err != nil { return err } u.removeNetwork(network) idStr := fmt.Sprintf("%v", network.ID) for _, dc := range u.downstreamConns { if dc.caps.IsEnabled("soju.im/bouncer-networks-notify") { dc.SendMessage(&irc.Message{ Prefix: dc.srv.prefix(), Command: "BOUNCER", Params: []string{"NETWORK", idStr, "*"}, }) } } return nil } func (u *user) updateUser(ctx context.Context, record *database.User) error { if u.ID != record.ID { panic("ID mismatch when updating user") } nickUpdated := u.Nick != record.Nick realnameUpdated := u.Realname != record.Realname enabledUpdated := u.Enabled != record.Enabled if err := u.srv.db.StoreUser(ctx, record); err != nil { return fmt.Errorf("failed to update user %q: %v", u.Username, err) } u.User = *record if nickUpdated { for _, net := range u.networks { if net.Nick != "" { continue } if uc := net.conn; uc != nil { uc.SendMessage(ctx, &irc.Message{ Command: "NICK", Params: []string{database.GetNick(&u.User, &net.Network)}, }) } } } if realnameUpdated || enabledUpdated { // Re-connect to networks which use the default realname var needUpdate []database.Network for _, net := range u.networks { // If only the realname was updated, maybe we can skip the // re-connect if realnameUpdated && !enabledUpdated { // If this network has a custom realname set, no need to // re-connect: the user-wide realname remains unused if net.Realname != "" { continue } // We only need to call updateNetwork for upstreams that don't // support setname if uc := net.conn; uc != nil && uc.caps.IsEnabled("setname") { uc.SendMessage(ctx, &irc.Message{ Command: "SETNAME", Params: []string{database.GetRealname(&u.User, &net.Network)}, }) continue } } needUpdate = append(needUpdate, net.Network) } var netErr error for _, net := range needUpdate { if _, err := u.updateNetwork(ctx, &net); err != nil { netErr = err } } if netErr != nil { return netErr } } if !u.Enabled { // TODO: send an error message before disconnecting for _, dc := range u.downstreamConns { dc.Close() } } return nil } func (u *user) stop(ctx context.Context) error { select { case <-u.done: return nil // already stopped case u.events <- eventStop{}: // we've requested to stop, let's wait for the user goroutine to exit case <-ctx.Done(): return ctx.Err() } select { case <-u.done: return nil case <-ctx.Done(): return ctx.Err() } } func (u *user) hasPersistentMsgStore() bool { if u.msgStore == nil { return false } return !msgstore.IsMemoryStore(u.msgStore) } func (u *user) FormatServerTime(t time.Time) string { if u.msgStore != nil && msgstore.IsFSStore(u.msgStore) { // The FS message store truncates message timestamps to the second, // so truncate them here to get consistent timestamps. t = t.Truncate(time.Second) } return xirc.FormatServerTime(t) } // localAddrForHost returns the local address to use when connecting to host. // A nil address is returned when the OS should automatically pick one. func (u *user) localTCPAddrForHost(ctx context.Context, host string) (*net.TCPAddr, error) { upstreamUserIPs := u.srv.Config().UpstreamUserIPs if len(upstreamUserIPs) == 0 { return nil, nil } ips, err := net.DefaultResolver.LookupIP(ctx, "ip", host) if err != nil { return nil, err } wantIPv6 := false for _, ip := range ips { if ip.To4() == nil { wantIPv6 = true break } } var ipNet *net.IPNet for _, in := range upstreamUserIPs { if wantIPv6 == (in.IP.To4() == nil) { ipNet = in break } } if ipNet == nil { return nil, nil } var ipInt big.Int ipInt.SetBytes(ipNet.IP) ipInt.Add(&ipInt, big.NewInt(u.ID+1)) ip := net.IP(ipInt.Bytes()) if !ipNet.Contains(ip) { return nil, fmt.Errorf("IP network %v too small", ipNet) } return &net.TCPAddr{IP: ip}, nil } func (u *user) bumpDownstreamInteractionTime(ctx context.Context) { record := u.User record.DownstreamInteractedAt = time.Now() if err := u.updateUser(ctx, &record); err != nil { u.logger.Printf("failed to bump downstream interaction time: %v", err) } }