////////////////////////////////////////////////////// // p_memview.cpp // // code for tracking memory usage, and displaying it in a graphical manner // keeps extra info about allocated blocks // including the call stack, so we can print out information // about specific allocated blocks // which we will select using the graphical memory browser // // // tried to use a little of the task system as possible // so we can run the inspector // without it messing with the heap it inspects // // extern char _mem_dump_start[]; extern char _map_file_start[]; extern char _symbols_start[]; extern char _callstack_start[]; extern char _code_end[]; extern char _std_mem_end[]; extern char _stack_size[]; extern char __text_org[]; extern char __data_org[]; extern char __rodata_org[]; extern char __bss_org[]; extern char __rodata_orgend[]; extern char __bss_objend[]; extern char __text_objend[]; //extern char _rwheapdebug_start[]; #define STACKDEPTH 30 extern "C" { extern void* ENTRYPOINT; } #include #include #include // needed for buttons #include #include // needed for loading map file #include #include #include #include #include #include #include // needed for some VerticalMenu specific debugging #include #include #include extern volatile int test_vblanks; class CCallStack { public: void Append(CCallStack *p); void Remove(); void InitHead(); int used; int size; CCallStack *pNext; CCallStack *pPrev; int addr[STACKDEPTH]; uint32 flags; Mem::Allocator::BlockHeader * pBlock; // pointer to block that has this callstack }; CCallStack free_list; // list of created objects CCallStack used_list; // list of created objects // init a node, so it can act as the head inline void CCallStack::InitHead() { pPrev = this; pNext = this; } // append node p to this node (after it) inline void CCallStack::Append(CCallStack *p) { p->pNext = this->pNext; p->pPrev = this; this->pNext = p; p->pNext->pPrev = p; } // simply unlink it from the list inline void CCallStack::Remove() { pPrev->pNext = pNext; pNext->pPrev = pPrev; } //CCallStack * CallStack_FirstFree; //CCallStack * CallStack_FirstUsed; static int MemView_Active = 0; #define MAX_CALLSTACK (8192 * 8) // we got 8 mb, woo woo. static float step = 128.0f; //static char HexByte(char a) //{ // if (a >= '0' && a <='9') // { // return a-'0'; // } // if (a >= 'A' && a <='F') // { // return 10 + a-'A'; // } // if (a >= 'a' && a <='f') // { // return 10 + a-'a'; // } // // // should really be an error, but just ignore it and return 0 // // as this is only used for parsing the map file // return 0; // // //} // // //static int doneonce = 0; char *MemView_GetFunctionName(int pc, int *p_size) { // // if (!pc) // { // return "NULL"; // } // // // given an address, return the name of the function // // does this by intially loading and buuilding a list of // // all the start points, and names, of all the functions // // by loading the skate3.map // // // static int symbols = 0; // // if (!doneonce) // { // //// mdl.m_fd = sceOpen( "host:ctrl_out.dat", SCE_RDWR ); ///// sceRead( mdl.m_fd, mdl.m_recorded_data, 72000 * sizeof( Inp::RecordedData )); //// sceClose( mdl.m_fd ); // // // #ifdef __NOPT_CDROM__OLD // int pFP= sceOpen("host:..\\build\\ngpsgnu\\skate4c.map", SCE_RDONLY); // #else // int pFP= sceOpen("host:..\\build\\ngpsgnu\\skate4.map", SCE_RDONLY); // #endif // // if (!pFP) // { // return "(skate4.map not loaded yet)"; // } // // // doneonce = 1; // // // Open the qb file and load it into memory. // //int FileSize = ((skyFile*)pFP)->SOF //// int FileSize = File::GetFileSize(pFP); // char *pQB= _map_file_start ; // sceRead(pFP,pQB,4000000); // sceClose(pFP); // // // Now the file is loaded, we need to extract all the functions // // so, search for the text // // char *p = strstr(pQB,"address order"); // int *d = (int*)_symbols_start; // while (*p!=0x0a) p++; // skip to start of next line // p++; // skip over 0a // while (*p) // { // p++; // skip over the space // // the next 8 characters are the address in upper case hex // int addr = 0; // for (int i=0;i<8;i++) // { // addr <<= 4; // addr += HexByte(*p++); // } // p+= 2; // skip two spaces // // // the next 8 characters are the size in upper case hex // int size = 0; // for (int i=0;i<8;i++) // { // size <<= 4; // size += HexByte(*p++); // } // // p+= 2; // skip two spaces // // // // only store symbols of non-zero size // // otherwise, we get confused by having things like _bss_size in there // // as they are not addresses, they just look like them, being so big... // if (size || (addr >(int) __text_objend)) // { // *d++ = addr; // store the address of the symbol // *d++ = (int)p; // store the start of the symbol name // symbols++; // one more symbol // } // // // search for first space, or CF, and replace with a 0 // // that way we ignore the "unmangled" version of the function // while (*p && /**p!=' ' &&*/ *p!=0x0a && *p!='(' && *p != 0x0d) p++; // *p++ = 0; // // // // skip to LF, and replace the // while (*p && *p!=0x0a) p++; // skip to start of next line // p++; // skip over 0a, will now be at the space on next line // } // } // // // int *s = (int*)_symbols_start; // //// just serach the table //// (might want a binary search, but no real need for speed) // for (int i=0;i pc) // if this one is above the pc // { // *p_size = addr-s[-2]; // calculate the size of the function // return (char*) (s[-1]); // then the previous one is the function // } // s += 2; // } return "UNKNOWN"; } // Modifed version of Jamie's unwind stack function // ignores the fp, and just goes directly off the sp // seems to work much better (and faster too) int DumpUnwindStack( int iMaxDepth, int *pDest ) { // uint32* ra; // uint64* sp; // frame pointer // ra = ((uint32*)DumpUnwindStack)+64; // fake point in function to unwind from ( // // after the sd ra,0(sp), but before getting it back //// asm ( "daddu %0, $29, $0" : "=r" (sp) ); // get current sp // sp = (uint64*)OSGetStackPointer(); // // if (!pDest) // { // printf("\n"); // } // // int icd = iMaxDepth; // depth counter // uint32* last_ra = NULL; // while ( icd-- ) // { // /* scan instruction*/ // uint32* pc = ra; // current pc, somewehre in middle of function // uint32 count = 4096; // enought to cover large functions (16k) // while ( count-- ) // { // uint32 ins = *pc; // get 32 bit instruction // if (((ins >> 16) & 0x7fff) == 0x7fbf) // sd ra,offset(sp) (or sq, for .C files) // { // uint32 offset = *(short*)pc; // get offset (bottom 16 bits) // ra = (uint32*)(sp[offset>>3]); // >>3 as it's at 64 bit word pointer // break; // } // pc--; // } // while ( count--) // { // uint32 ins = *pc; // get 32 bit instruction // if ((ins >> 16) == 0x27bd) // addiu sp,sp,offset // { // int offset = *(short*)pc; // get offset (bottom 16 bits) // if (offset & 0x8000) // { // offset |= 0xffff0000; // } // sp = (uint64*)( (int)(sp) - (offset)); // break; // } // pc--; // } // //// if (last_ra == ra) //// { //// icd++; // one more please.... //// } //// else // { // last_ra = ra; // if (pDest) // { // *pDest++ = (int)ra; // *pDest = 0; // } // else // { // int size; // // printf ("sp = %p, ra = %p %s\n",sp,ra,MemView_GetFunctionName((int)ra)); // printf ("%p: %s\n",ra,MemView_GetFunctionName((int)ra,&size)); // } // } // // // test to see if we have recursed up all the way... // if (abs(int((int)ra - (int)&ENTRYPOINT)) < 1024 // || (int)ra &3 // || (int)ra < 0x100000 // || (int)ra > (int)_code_end // and check it's not totally crazy.... // ) // { // return 0; // } // // } // return iMaxDepth - icd; return 0; } // mD_L2 = nBit( vD_L2 ), // mD_R2 = nBit( vD_R2 ), // mD_L1 = nBit( vD_L1 ), // mD_R1 = nBit( vD_R1 ), // mD_TRIANGLE = nBit( vD_TRIANGLE ), // mD_CIRCLE = nBit( vD_CIRCLE ), // mD_X = nBit( vD_X ), // mD_SQUARE = nBit( vD_SQUARE ), // mD_SELECT = nBit( vD_SELECT ), // mD_L3 = nBit( vD_L3 ), // mD_R3 = nBit( vD_R3 ), // mD_START = nBit( vD_START ), // mD_UP = nBit( vD_UP ), // mD_RIGHT = nBit( vD_RIGHT ), // mD_DOWN = nBit( vD_DOWN ), // mD_LEFT = nBit( vD_LEFT ), void MemViewToggle() { MemView_Active ^=1; } void MemView_Alloc( void *v) { #ifdef __LINKED_LIST_HEAP__ #ifdef __NOPT_CDROM__OLD return; #endif #endif } void MemView_Free( void *v) { #ifdef __LINKED_LIST_HEAP__ // Need to remove it from the used list // and add it back to the full list Mem::Allocator::BlockHeader *p = (Mem::Allocator::BlockHeader *)v; #ifdef __NOPT_CDROM__OLD // return; #endif CCallStack *c = (CCallStack*)p->mp_debug_data; if (!c) { // no debug data, so probably a re-alloc // should probably handle those later return; } // we clear it, in case this header is re-used later // I'm not entirely sure how well this will work p->mp_debug_data = NULL; c->Remove(); free_list.Append(c); #endif } Mem::Allocator::BlockHeader *MemView_FindBlock( int addr) { #ifdef __LINKED_LIST_HEAP__ Mem::Allocator::BlockHeader *pSmallestBlock = NULL; uint32 smallest_block_size = 100000000; Mem::Manager& mem_man = Mem::Manager::sHandle(); for (Mem::Heap* heap = mem_man.FirstHeap(); heap != NULL; heap = mem_man.NextHeap(heap)) { Mem::Allocator::BlockHeader *pBlock = (Mem::Allocator::BlockHeader *) heap->find_block((void*)addr); if (pBlock) { if (pBlock->mSize < smallest_block_size) { smallest_block_size = pBlock->mSize; pSmallestBlock = pBlock; } } } return pSmallestBlock; #else return NULL; #endif } char * MemView_GetClassName(CCallStack *c) { #ifdef __LINKED_LIST_HEAP__ int *ra = (int*)(c->addr[4]); if (!ra) return NULL; int count = STACKDEPTH-4; while (count--) { int instruction = *ra++; if (instruction >> 24 == 0x0c) { int code = (instruction & 0xffffff)<<2; int size; char *p = MemView_GetFunctionName(code,&size); // to tell if this is class or not // we see if the text is of the form // classname::classname (teminated by a 0) // as that indicates that it is a constructor // dude... this is where we need a regular expression.... char *end = p; while (*end) end++; // scan to end while (end[-1] != ':' && end > p) end--; // skip to char after the last : char *other = strstr(p,end); // find fist occurance of end of string if (other != end) // if different, then this is it!! { return MemView_GetFunctionName(code,&size); break; } } } #endif return NULL; } void MemView_DumpBlockInfo(int cursor) { #ifdef __LINKED_LIST_HEAP__ Mem::Allocator::BlockHeader *pBlock = MemView_FindBlock(cursor); if (!pBlock) { // should search free blocks here??? } // find this in the allocators used list // and say if it is free, or not if (pBlock == NULL) { // if (cursor > (int)__text_org && cursor < (int)__bss_objend) // check to see if in code/data // { // // if (cursor < (int)__data_org) // printf("Code: "); // else if (cursor < (int)__rodata_org) // printf("Data: "); // else if (cursor < (int)__bss_org) // printf("RO-Data: "); // else // printf("BSS: "); // // // int size; // char *p_name = MemView_GetFunctionName(cursor,&size); // printf ( "%s, size %d\n",p_name,size); // } // else { printf ("Block Not Found\n"); } } else { void * p_start = (void*)((uint)pBlock + Mem::Allocator::BlockHeader::sSize); printf ("Block found, addr = %p, size = %d (Header = %d)\n",p_start,pBlock->mSize,Mem::Allocator::BlockHeader::sSize); CCallStack *c = (CCallStack*)pBlock->mp_debug_data; if (!c) { //printf ("Block with No Debug Info!!\n"); } else { // assume this is a "new", then the fourth callstack ra will point to the // jal xxxxxx instruction, where xxxxx is the constructor for the // or it might be sortly thereafter, so check 16 instructions char * classname = MemView_GetClassName(c); if (classname) { printf ("CLASS: %s\n",classname); } // then list out the call stack (skipping the MemView_Alloc, as that's a given, and irrelevant); int *p = c->addr + 1; while (p[1]) // also skip the ENTRYPOINT, just go back to main() { int size; printf ("%p: %s\n",(void*)*p,MemView_GetFunctionName(*p,&size)); p++; } } } #endif } static int blockstart; static float cursor; void MemView_Display() { //#ifdef __NOPT_CDROM__OLD // return; //#endif // // // if (!MemView_Active) // { // return; // } // // FlushCache( 0 ); // sceGsSyncPath( 0, 0 ); // // //perfrom the copying // // there are 512x256 words in the rectangle // // and 32768*1024 bytes in memory // // giving us a step of 256 (i.e, sample every 256th bytes) // // // // The start of the middle line will be at // // start + 512 * 2 * 128 * step; // // then start1 + 512 * 2 * 128 * step1 // // for them to be the same, start + 512 * 2 * 128 * step = start1 + 512 * 2 * 128 * step1 // // so start1 = start + 512 * 2 * 128 * (step - step1) // // // // blockstart = 0; // int blockend = 0; // // static float last_start; // // float start = cursor - (512.0f * 2.0f * 128.0f * step); // // int i_cursor = (int)cursor; // // Mem::Allocator::BlockHeader *pBlock = MemView_FindBlock(i_cursor); // // if (pBlock) // { // blockstart = (int)((uint)pBlock + Mem::Allocator::BlockHeader::sSize); // int size = pBlock->mSize; // blockend = (int)((int)blockstart + size); // } // // if (start != last_start) // { // last_start = start; // printf ("\nCursor Addr = %p\n",(void*)i_cursor); // MemView_DumpBlockInfo(i_cursor); // } // // // static int color = 10 + (10<<5) ; //// color ^= 5 << 10; // // float f_source = start; // float f_off = 0.0f; //// uint16 *source = (uint16*)(intstart&~1); // converting from a float to a pointer... yowza!!! // uint16 *dest = (uint16*)_mem_dump_start; // for (int i=0;i<512*256-4096;i++) // { // uint16 *source = (uint16*)((int)(f_source + f_off) &~1); // // uint32 word; // if (source < (uint16*)0x00100000 || source >= (uint16*)(0x08000000)) // { // word = (3<<10)+(3<<5)+(3); // grey for outside of memory // } // else // { // if (blockstart && (int)(source)>=blockstart && (int)(source) (uint32)_code_end /*&& x < (uint32)_std_mem_end*/) // don't check for end now, as we have some debug heaps up there we want to include // { // // check to see if it points to one of the heap members // // uint32 *p_refs = (uint32*)_mem_dump_start; // // #if 0 // for (int i=0;i x) // { // high = mid; // } // else // { // // if the low point is already the same as the mid point // // then the only way to go is up! // // as this will only occur when low + 1 == high // if (low == mid) // { // low = high; // } // else // { // low = mid; // } // } // } // x -= 16; // } // x = oldx; // #endif // } // } // // //} #endif #ifdef __LINKED_LIST_HEAP__ static uint32 *p_used; #endif int MemView_CountBlocks(Mem::Allocator::BlockHeader *p_header) { #ifdef __LINKED_LIST_HEAP__ int num_used = 0; while ( p_header ) { void * p_start = (void*)((uint)p_header + Mem::Allocator::BlockHeader::sSize); *p_used++ = (uint32)p_start; // store the start of the block *p_used++ = 0; // store a count p_header = p_header->mp_next_used; num_used++; } return num_used; #else return 0; #endif } int blockCompFunc( const void *arg1, const void *arg2 ) { uint32 addr1 = (*(uint32*)arg1); uint32 addr2 = (*(uint32*)arg2); if ( addr1 == addr2 ) { return 0; } else if ( addr1 < addr2 ) { return 1; } else { return -1; } } // Find memory leaks // the algorithm is quite simple: // 1) Make a list of all "used" memory blocks, and set their usage count to 0 // 2) Scan all of the heap, and the stack, for each word that looks like a pointer, // check to see if it is in the list of "used", and increment the usage count if so // 3) Scan the list of used pointers, and check for any with usage == 0 // NEED OT EXTEND FOR TOP_DOWN heap..... void MemView_FindLeaks() { //#ifdef __LINKED_LIST_HEAP__ // p_used = (uint32*)_mem_dump_start; // num_used = 0; // printf ("Counting blocks...."); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().BottomUpHeap()->first_block()); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().TopDownHeap()->first_block()); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().FrontEndHeap()->first_block()); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().NetworkHeap()->first_block()); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().ScriptHeap()->first_block()); // num_used += MemView_CountBlocks(Mem::Manager::sHandle().SkaterHeap(0)->first_block()); //// num_used += MemView_CountBlocks(Mem::Manager::sHandle().DebugHeap()->first_block()); // printf (" %d\n",num_used); // printf ("Sorting .....\n"); // // Now we've done that, let's sort the list, so we can use a binary search later // // // #if 1 // uint32 *p_top = (uint32*)_mem_dump_start; // for (int i = 0;i= 10) { printf ("Stopping after %d refs\n",count); return; } if (p_start >= p_end) { printf ("No more References Found in heap \n"); return; } } #endif } // Find the first block in the free list // if no free blocks, then return // scan all used blocks, and print out the info for all the blocks // that have an address above the first free block void MemView_DumpFragments(Mem::Heap *pHeap) { #ifdef __LINKED_LIST_HEAP__ if (!pHeap->mFreeBlocks.m_count) { printf ("NO Fragmentation\n"); return; } if (!pHeap->mp_context->mp_free_list) { printf ("!!!!!! No free list, but there are %d free blocks???\n",pHeap->mFreeBlocks.m_count); return; } Mem::Allocator::BlockHeader *p_free = pHeap->mp_context->mp_free_list; while (p_free->mSize < 10000) { Mem::Allocator::BlockHeader *p_next = p_free->mpNext; if (!p_next) { printf ("Did not find a free block >10K ?????\n"); } p_free = p_next; } Mem::Allocator::BlockHeader *p_full = pHeap->mp_context->mp_used_list; printf ("!!!!!! Free list starts at %p\n",p_free); // The first p_free will be the start of fragmentations while (p_full) { if (p_full > p_free) { //printf ("\nFramgented Block\n\n"); void * p_start = (void*)((uint)p_full + Mem::Allocator::BlockHeader::sSize); MemView_DumpBlockInfo((int)p_start); for (int xx=0;xx<1000000;xx++); // little delay, to allow printfs to work } p_full = p_full->mp_next_used; } #endif } void MemView_DumpHeap(Mem::Heap *pHeap, uint32 mask) { #ifdef __LINKED_LIST_HEAP__ // Mem::Allocator::BlockHeader *p_free = pHeap->mp_context->mp_free_list; Mem::Allocator::BlockHeader *p_full = pHeap->mp_context->mp_used_list; // The first p_free will be the start of fragmentations while (p_full) { // if (p_full > p_free) // CCallStack *c = (CCallStack*)p_full->mp_debug_data; // if (!mask || !c || !(c->flags && mask)) { printf ("\n"); void * p_start = (void*)((uint)p_full + Mem::Allocator::BlockHeader::sSize); MemView_DumpBlockInfo((int)p_start); } p_full = p_full->mp_next_used; } #endif } void MemView_DumpBottomFragments() { MemView_DumpFragments(Mem::Manager::sHandle().BottomUpHeap()); } void MemView_DumpTopFragments() { MemView_DumpFragments(Mem::Manager::sHandle().TopDownHeap()); } /* class CCallStack { public: void Append(CCallStack *p); void Remove(); void InitHead(); int used; int size; CCallStack *pNext; CCallStack *pPrev; int addr[STACKDEPTH]; }; */ struct SBlockType { int return_addr; // first meaningful return addr int size; // size of block (if we want to sort by it int total; // total size of this type int actual; // actual total size, including headers char *p_class; // points to class node int count; }; // scan throught the list of "used" blocks // and sort them into a list, organized by "type" // the "type" is determined by the first return address after // a callstack entry that is either "Malloc" or "Spt::Class::operator new" // the "type" is furthur sorted by either "size" or "Class" // where "size" is the size of the block (for a Malloc) // and "Class" is the type of class that constructed this block #define MAX_TYPES 10000 void MemView_DumpAnalysis( SBlockType* blocks, int numBlocksToPrint ) { #ifdef __LINKED_LIST_HEAP__ // Sorts the types, and print out totals int temp; for (int i = 0; i < numBlocksToPrint; i++) { for (int j = i+1;jsize; // size is the only thing we know for sure int return_addr = 0; // default unknown return address char *p_class = "not a class"; int latest = 1; int i = 0; for ( i = 1; i < 8; i++ ) { int xsize; /* // the types of call stack we may encounter: // need to 0x10be48: Mem::Heap::allocate 0x109914: Mem::Manager::New 0x1035b0: Spt::Class::operator new 0x161094: Front::KeyboardControl::sCreateInstance 0x10be48: Mem::Heap::allocate 0x109914: Mem::Manager::New 0x10a150: Malloc 0x222df8: _SkyBuildPktForUpLoadAlignedContiguousRectangle 0x10be48: Mem::Heap::allocate 0x109914: Mem::Manager::New 0x10a210: Malloc_FreeList 0x257034: _rwFreeListAllocReal */ char *p_name = MemView_GetFunctionName(pCallStack->addr[i],&xsize); if (!strcmp("Malloc",p_name) || !strcmp("Spt::Class::operator new",p_name) || !strcmp("Mem::Manager::New",p_name) || !strcmp("_rwFreeListAllocReal",p_name)) { latest = i; } } if (latest != 1) { return_addr = pCallStack->addr[latest+1]; } p_class = MemView_GetClassName(pCallStack); // get class // right, now we have all the info on this block // let's see if we've got one just like it // if (!p_class && !MemView_GetFunctionName(return_addr,&temp)) /* if (!return_addr) { for (int i = 0;i>%s<<\n",i,MemView_GetFunctionName(p->addr[i],&temp)); } return; } */ // check if it is a string, and print it out, if so /* int temp; if (!strcmp("Str::String::copy",MemView_GetFunctionName(return_addr,&temp))) { printf ("String <%s>\n",(char*)((char*)(pCallStack->pBlock)+32)); } if (!strcmp("Front::VerticalMenu::sCreateInstance",MemView_GetFunctionName(return_addr,&temp))) { void *p_start = (void*)((char*)(pCallStack->pBlock)+32); printf ("\nVertical Menu "); Front::ScreenElement *pV = (Front::ScreenElement *)p_start; printf (" id = %s\n", Script::FindChecksumName(pV->GetID())); // MemView_DumpBlockInfo((int)p_start); } */ // check to see if this block is already included for ( i = 0; i < num; i++ ) { if ( pBlocks[i].p_class == p_class /*&& pBlocks[i].size == size */ && pBlocks[i].return_addr == return_addr ) { pBlocks[i].count++; pBlocks[i].total += size; pBlocks[i].actual += size + Mem::Allocator::BlockHeader::sSize; break; } } // if not, then add the block if ( i == num ) { pBlocks[i].p_class = p_class; pBlocks[i].size = size; pBlocks[i].total = size; pBlocks[i].actual = size + Mem::Allocator::BlockHeader::sSize; pBlocks[i].return_addr = return_addr; pBlocks[i].count = 1; num++; } } #ifdef __LINKED_LIST_HEAP__ //static int bbb = 0; // compiler patch var, see below #endif void MemView_AnalyzeBlocks(uint32 mask) { //#ifdef __LINKED_LIST_HEAP__ // SBlockType *pBlocks = (SBlockType *)_mem_dump_start; // temp memory // int num_blocks = 0; // int num = 0; // // printf ("\nAnalyzing blocks....\n"); // // CCallStack *p = used_list.pNext; // while (p != &used_list) // { // // Get the actualy block we referred to //// Mem::Allocator::BlockHeader * pBlock = p->pBlock; //// void * p_start = (void*)((uint)pBlock + Mem::Allocator::BlockHeader::sSize); // // Otionally check to see if it on the front end heap //// if (Mem::SameContext(p_start,Mem::Manager::sHandle().FrontEndHeap())) // { // if (!mask || !(p->flags & mask)) // { // MemView_AnalyzeCallStack( p, pBlocks, num ); // num_blocks++; // } // } // p = p->pNext; // } // // printf ("%d types, in %d total blocks\n", num, num_blocks); // // MemView_DumpAnalysis( pBlocks, num ); // if (bbb) // { // MemView_DumpBottomFragments(); // just to get it compiling // MemView_DumpTopFragments(); // just to get it compiling // } //#endif } void MemView_MarkBlocks(uint32 mask) { #ifdef __LINKED_LIST_HEAP__ CCallStack *p = used_list.pNext; while (p != &used_list) { p->flags |= mask; p = p->pNext; } #endif } void MemView_Input(uint buttons, uint makes, uint breaks) { if (Config::CD()) { return; } // if (makes & Inp::Data::mD_TRIANGLE) // { // MemView_Active = !MemView_Active; // } if (!MemView_Active) { return; } float step1 = step; float zoom = 1.1f; float scroll = 4.0f; if (buttons & Inp::Data::mD_LEFT) { step1 = step * zoom; } if (buttons & Inp::Data::mD_RIGHT) { step1 = step / zoom; } if (buttons & Inp::Data::mD_UP) { // start = start - scroll * 512.0f * 2.0f * step; cursor = cursor - scroll * 512.0f * 2.0f * step; } if (buttons & Inp::Data::mD_DOWN) { // start = start + scroll * 512.0f * 2.0f * step; cursor = cursor + scroll * 512.0f * 2.0f * step; } if (buttons & Inp::Data::mD_L1) { // start = start - scroll * 512.0f * 2.0f * step / 256.0f; cursor = cursor - scroll * 2.0f * 2.0f * step; } if (buttons & Inp::Data::mD_L2) { // start = start + scroll * 512.0f * 2.0f * step / 256.0f; cursor = cursor + scroll * 2.0f * 2.0f * step; } #define MMMIN (0.0078125f) if (step1 1024.0f) { step1 = 1024.0f; } // start = start + (512.0f * 2.0f * 128.0f * (step - step1)); step = step1; if (makes & Inp::Data::mD_CIRCLE) { if (blockstart) { MemView_DumpRefs(blockstart); } // MemView_MarkBlocks(1); } // We don't look for leaks automatically now, so I'v put it on "SQUARE" if (makes & Inp::Data::mD_SQUARE) { MemView_FindLeaks(); // Mem::Manager& mem_man = Mem::Manager::sHandle(); MemView_DumpHeap(1); // heap = mem_man.TopDownHeap(); // MemView_DumpFragments(heap); // MemView_DumpHeap(heap,1); } if (makes & Inp::Data::mD_X) { MemView_AnalyzeBlocks(); } // Triangle = Dump Fragmentation /* if (makes & Inp::Data::mD_TRIANGLE) { Mem::Manager& mem_man = Mem::Manager::sHandle(); Mem::Heap* heap = mem_man.BottomUpHeap(); Mem::Region* region = heap->ParentRegion(); printf ("BottomUp Frag %dK, %d Blocks\n",heap->mFreeMem.m_count / 1024, heap->mFreeBlocks.m_count); printf ("Region %d/%d K", region->MemAvailable() / 1024, region->TotalSize() / 1024 ); MemView_DumpFragments(heap); } */ } void MemView_AnalyzeHeap(Mem::Heap *pHeap) { if ( !pHeap ) return; //#ifdef __LINKED_LIST_HEAP__ // SBlockType *pBlocks = (SBlockType *)_mem_dump_start; // temp memory // int num_blocks = 0; // int num = 0; // // Mem::Allocator::BlockHeader *p_full = pHeap->mp_context->mp_used_list; // // while (p_full) // { // CCallStack* pCallStack = (CCallStack*)p_full->mp_debug_data; // // if ( pCallStack ) // { // MemView_AnalyzeCallStack( pCallStack, pBlocks, num ); // } // else // { // printf ("Block with No Debug Info!!\n"); // } // // p_full = p_full->mp_next_used; // } // // printf ("%d types, in %d total blocks\n", num, num_blocks); // // MemView_DumpAnalysis( pBlocks, num ); //#endif }