#include #include "gfx/xbox/nx/render.h" #include "gfx/xbox/p_nxparticleLine.h" extern DWORD PixelShader1; namespace Nx { /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleLine::CXboxParticleLine() { } /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleLine::CXboxParticleLine( uint32 checksum, int max_particles, uint32 texture_checksum, uint32 blendmode_checksum, int fix, int num_segments, float split ) { m_checksum = checksum; m_max_particles = max_particles; m_num_particles = 0; mp_particle_array = new CParticleEntry[max_particles]; // Allocate vertex buffer. mp_vertices[0] = new float[max_particles * 3]; mp_vertices[1] = new float[max_particles * 3]; // 2nd buffer to keep history. // Create the engine representation. mp_engine_particle = new NxXbox::sParticleSystem( max_particles, NxXbox::PARTICLE_TYPE_LINE, texture_checksum, blendmode_checksum, fix ); // Default color. for ( int lp = 0; lp < 2; lp++ ) { m_start_color[lp].r = m_start_color[lp].g = m_start_color[lp].b = 128; m_start_color[lp].a = 255; m_mid_color[lp].r = m_mid_color[lp].g = m_mid_color[lp].b = 128; m_mid_color[lp].a = 255; m_end_color[lp].r = m_end_color[lp].g = m_end_color[lp].b = 128; m_end_color[lp].a = 255; } m_mid_time = -1.0f; } /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleLine::~CXboxParticleLine() { delete [] mp_particle_array; delete [] mp_vertices[0]; delete [] mp_vertices[1]; delete mp_engine_particle; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleLine::plat_get_position( int entry, int list, float * x, float * y, float * z ) { float* p_v = &mp_vertices[list][entry*3]; *x = p_v[0]; *y = p_v[1]; *z = p_v[2]; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleLine::plat_set_position( int entry, int list, float x, float y, float z ) { float* p_v = &mp_vertices[list][entry*3]; p_v[0] = x; p_v[1] = y; p_v[2] = z; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleLine::plat_add_position( int entry, int list, float x, float y, float z ) { float* p_v = &mp_vertices[list][entry*3]; p_v[0] += x; p_v[1] += y; p_v[2] += z; } /******************************************************************/ /* */ /* */ /******************************************************************/ int CXboxParticleLine::plat_get_num_particle_colors( void ) { return 2; } int CXboxParticleLine::plat_get_num_vertex_lists( void ) { return 2; } void CXboxParticleLine::plat_set_sr( int entry, uint8 value ) { m_start_color[entry].r = value; } void CXboxParticleLine::plat_set_sg( int entry, uint8 value ) { m_start_color[entry].g = value; } void CXboxParticleLine::plat_set_sb( int entry, uint8 value ) { m_start_color[entry].b = value; } void CXboxParticleLine::plat_set_sa( int entry, uint8 value ) { m_start_color[entry].a = value; } void CXboxParticleLine::plat_set_mr( int entry, uint8 value ) { m_mid_color[entry].r = value; } void CXboxParticleLine::plat_set_mg( int entry, uint8 value ) { m_mid_color[entry].g = value; } void CXboxParticleLine::plat_set_mb( int entry, uint8 value ) { m_mid_color[entry].b = value; } void CXboxParticleLine::plat_set_ma( int entry, uint8 value ) { m_mid_color[entry].a = value; } void CXboxParticleLine::plat_set_er( int entry, uint8 value ) { m_end_color[entry].r = value; } void CXboxParticleLine::plat_set_eg( int entry, uint8 value ) { m_end_color[entry].g = value; } void CXboxParticleLine::plat_set_eb( int entry, uint8 value ) { m_end_color[entry].b = value; } void CXboxParticleLine::plat_set_ea( int entry, uint8 value ) { m_end_color[entry].a = value; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleLine::plat_render( void ) { if( m_num_particles > 0 ) { int lp; CParticleEntry *p_particle; float *p_v0, *p_v1; // Mth::Vector min, max; // For dynamic bounding box calculation. // Obtain push buffer lock. DWORD *p_push; DWORD dwords_per_particle = 8; DWORD dword_count = dwords_per_particle * m_num_particles; // Submit particle material. mp_engine_particle->mp_material->Submit(); // Set up correct vertex and pixel shader. NxXbox::set_vertex_shader( D3DFVF_XYZ | D3DFVF_DIFFUSE ); NxXbox::set_pixel_shader( PixelShader1 ); // The additional number (+5 is minimum) is to reserve enough overhead for the encoding parameters. It can safely be more, but no less. p_push = D3DDevice_BeginPush( dword_count + 32 ); // Note that p_push is returned as a pointer to write-combined memory. Writes to write-combined memory should be // consecutive and in increasing order. Reads should be avoided. Additionally, any CPU reads from memory or the // L2 cache can force expensive partial flushes of the 32-byte write-combine cache. p_push[0] = D3DPUSH_ENCODE( D3DPUSH_SET_BEGIN_END, 1 ); p_push[1] = D3DPT_LINELIST; p_push += 2; // Set up loop variables here, since we be potentially enetering the loop more than once. lp = 0; p_particle = mp_particle_array; p_v0 = mp_vertices[0]; p_v1 = mp_vertices[1]; while( dword_count > 0 ) { int dwords_written = 0; // NOTE: A maximum of 2047 DWORDs can be specified to D3DPUSH_ENCODE. If there is more than 2047 DWORDs of vertex // data, simply split the data into multiple D3DPUSH_ENCODE( D3DPUSH_INLINE_ARRAY ) sections. p_push[0] = D3DPUSH_ENCODE( D3DPUSH_NOINCREMENT_FLAG | D3DPUSH_INLINE_ARRAY, ( dword_count > 2047 ) ? ((int)( 2047 / dwords_per_particle )) * dwords_per_particle: dword_count ); ++p_push; for( ; lp < m_num_particles; lp++, p_particle++, p_v0 += 3, p_v1 += 3 ) { // Check to see if writing another particle will take us over the edge. if(( dwords_written + dwords_per_particle ) > 2047 ) { break; } float terp = p_particle->m_time / p_particle->m_life; // Todo: Move hook to matrix/emitter code to cut down on per particle calculation. Mth::Vector pos0( p_v0[0] + m_pos[X], p_v0[1] + m_pos[Y], p_v0[2] + m_pos[Z] ); Mth::Vector pos1( p_v1[0] + m_pos[X], p_v1[1] + m_pos[Y], p_v1[2] + m_pos[Z] ); // Dynamic bounding box calculation. // if( lp == 0 ) // { // min = pos0; // max = pos0; // } // else // { // if( pos0[X] < min[X] ) min[X] = pos0[X]; else if( pos0[X] > max[X] ) max[X] = pos0[X]; // if( pos0[Y] < min[Y] ) min[Y] = pos0[Y]; else if( pos0[Y] > max[Y] ) max[Y] = pos0[Y]; // if( pos0[Z] < min[Z] ) min[Z] = pos0[Z]; else if( pos0[Z] > max[Z] ) max[Z] = pos0[Z]; // } Image::RGBA color[2]; Image::RGBA *p_col0[2]; Image::RGBA *p_col1[2]; if( m_mid_time >= 0.0f ) { if( terp < m_mid_time ) { p_col0[0] = &m_start_color[0]; p_col1[0] = &m_mid_color[0]; p_col0[1] = &m_start_color[1]; p_col1[1] = &m_mid_color[1]; // Adjust interpolation for this half of the color blend. terp = terp / m_mid_time; } else { p_col0[0] = &m_mid_color[0]; p_col1[0] = &m_end_color[0]; p_col0[1] = &m_mid_color[1]; p_col1[1] = &m_end_color[1]; // Adjust interpolation for this half of the color blend. terp = ( terp - m_mid_time ) / ( 1.0f - m_mid_time ); } } else { // No mid color specified. p_col0[0] = &m_start_color[0]; p_col1[0] = &m_end_color[0]; p_col0[1] = &m_start_color[1]; p_col1[1] = &m_end_color[1]; } // Swap red and blue here. for( int c = 0; c < 2; ++c ) { Image::RGBA start = *( p_col0[c] ); Image::RGBA end = *( p_col1[c] ); color[c].b = start.r + (uint8)(( ((float)( end.r - start.r )) * terp )); color[c].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp )); color[c].r = start.b + (uint8)(( ((float)( end.b - start.b )) * terp )); color[c].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp )); } p_push[0] = *((DWORD*)&pos0[X] ); p_push[1] = *((DWORD*)&pos0[Y] ); p_push[2] = *((DWORD*)&pos0[Z] ); p_push[3] = *((DWORD*)&color[0] ); p_push += 4; p_push[0] = *((DWORD*)&pos1[X] ); p_push[1] = *((DWORD*)&pos1[Y] ); p_push[2] = *((DWORD*)&pos1[Z] ); p_push[3] = *((DWORD*)&color[1] ); p_push += 4; dwords_written += dwords_per_particle; dword_count -= dwords_per_particle; } } p_push[0] = D3DPUSH_ENCODE( D3DPUSH_SET_BEGIN_END, 1 ); p_push[1] = 0; p_push += 2; D3DDevice_EndPush( p_push ); // Set the mesh bounding box and sphere. // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_bbox.SetMin( min ); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_bbox.SetMax( max ); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_center = D3DXVECTOR3( min[X] + (( max[X] - min[X] ) * 0.5f ), min[Y] + (( max[Y] - min[Y] ) * 0.5f ), min[Z] + (( max[Z] - min[Z] ) * 0.5f )); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_radius = 360.0f; // And the scene bounding sphere. // mp_engine_particle->mp_scene->m_sphere_center = mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_center; // mp_engine_particle->mp_scene->m_sphere_radius = mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_radius; } } } // Nx