#include #include #include "gfx/xbox/p_nxparticleRibbonTrail.h" extern DWORD PixelShader1; namespace Nx { /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleRibbonTrail::CXboxParticleRibbonTrail() { } /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleRibbonTrail::CXboxParticleRibbonTrail( uint32 checksum, int max_particles, uint32 texture_checksum, uint32 blendmode_checksum, int fix, int num_segments, float split, int history ) { m_checksum = checksum; m_max_particles = max_particles; m_num_particles = 0; m_mid_time = -1.0f; m_history = history; mp_particle_array = new CParticleEntry[max_particles]; // Allocate vertex buffer. mp_vertices = new float*[( history + 1)]; for( int lp = 0; lp < ( history + 1 ); lp++ ) { mp_vertices[lp] = new float[max_particles * 3]; } m_num_vertex_buffers = history + 1; // Create the engine representation. mp_engine_particle = new NxXbox::sParticleSystem( max_particles, NxXbox::PARTICLE_TYPE_RIBBONTRAIL, texture_checksum, blendmode_checksum, fix, num_segments, history ); // Default color. m_start_color = new Image::RGBA[m_num_vertex_buffers]; m_mid_color = new Image::RGBA[m_num_vertex_buffers]; m_end_color = new Image::RGBA[m_num_vertex_buffers]; for ( int lp = 0; lp < m_num_vertex_buffers; lp++ ) { m_start_color[lp].r = 128; m_start_color[lp].g = 128; m_start_color[lp].b = 128; m_start_color[lp].a = 255; m_mid_color[lp].r = 128; m_mid_color[lp].g = 128; m_mid_color[lp].b = 128; m_mid_color[lp].a = 255; m_end_color[lp].r = 128; m_end_color[lp].g = 128; m_end_color[lp].b = 128; m_end_color[lp].a = 255; } } /******************************************************************/ /* */ /* */ /******************************************************************/ CXboxParticleRibbonTrail::~CXboxParticleRibbonTrail() { delete [] mp_particle_array; for ( int lp = 0; lp < m_num_vertex_buffers; lp++ ) { delete [] mp_vertices[lp]; } delete [] mp_vertices; delete [] m_start_color; delete [] m_mid_color; delete [] m_end_color; delete mp_engine_particle; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleRibbonTrail::plat_get_position( int entry, int list, float * x, float * y, float * z ) { float* p_v = &mp_vertices[list][entry*3]; *x = p_v[0]; *y = p_v[1]; *z = p_v[2]; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleRibbonTrail::plat_set_position( int entry, int list, float x, float y, float z ) { float* p_v = &mp_vertices[list][entry*3]; p_v[0] = x; p_v[1] = y; p_v[2] = z; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleRibbonTrail::plat_add_position( int entry, int list, float x, float y, float z ) { float* p_v = &mp_vertices[list][entry*3]; p_v[0] += x; p_v[1] += y; p_v[2] += z; } /******************************************************************/ /* */ /* */ /******************************************************************/ int CXboxParticleRibbonTrail::plat_get_num_particle_colors( void ) { return m_num_vertex_buffers; } int CXboxParticleRibbonTrail::plat_get_num_vertex_lists( void ) { return m_num_vertex_buffers; } void CXboxParticleRibbonTrail::plat_set_sr( int entry, uint8 value ) { m_start_color[entry].r = value; } void CXboxParticleRibbonTrail::plat_set_sg( int entry, uint8 value ) { m_start_color[entry].g = value; } void CXboxParticleRibbonTrail::plat_set_sb( int entry, uint8 value ) { m_start_color[entry].b = value; } void CXboxParticleRibbonTrail::plat_set_sa( int entry, uint8 value ) { m_start_color[entry].a = value; } void CXboxParticleRibbonTrail::plat_set_mr( int entry, uint8 value ) { m_mid_color[entry].r = value; } void CXboxParticleRibbonTrail::plat_set_mg( int entry, uint8 value ) { m_mid_color[entry].g = value; } void CXboxParticleRibbonTrail::plat_set_mb( int entry, uint8 value ) { m_mid_color[entry].b = value; } void CXboxParticleRibbonTrail::plat_set_ma( int entry, uint8 value ) { m_mid_color[entry].a = value; } void CXboxParticleRibbonTrail::plat_set_er( int entry, uint8 value ) { m_end_color[entry].r = value; } void CXboxParticleRibbonTrail::plat_set_eg( int entry, uint8 value ) { m_end_color[entry].g = value; } void CXboxParticleRibbonTrail::plat_set_eb( int entry, uint8 value ) { m_end_color[entry].b = value; } void CXboxParticleRibbonTrail::plat_set_ea( int entry, uint8 value ) { m_end_color[entry].a = value; } /******************************************************************/ /* */ /* */ /******************************************************************/ void CXboxParticleRibbonTrail::plat_render( void ) { // Draw the particles. if( m_num_particles > 0 ) { int lp; CParticleEntry *p_particle; float *p_v; // Mth::Vector min, max; // For dynamic bounding box calculation. // Used to figure the right and up vectors for creating screen-aligned particle quads. D3DXMATRIX *p_matrix = (D3DXMATRIX*)&NxXbox::EngineGlobals.view_matrix; // Get the 'right' vector as the cross product of camera 'at and world 'up'. Mth::Vector at( p_matrix->m[0][2], p_matrix->m[1][2], p_matrix->m[2][2] ); Image::RGBA color[2]; Image::RGBA *p_col0; Image::RGBA *p_col1; // Obtain push buffer lock. DWORD *p_push; DWORD dwords_per_particle = 16 * ( m_num_vertex_buffers - 1 ); DWORD dword_count = dwords_per_particle * m_num_particles; // Submit particle material. mp_engine_particle->mp_material->Submit(); // Set up correct vertex and pixel shader. NxXbox::set_vertex_shader( D3DFVF_XYZ | D3DFVF_DIFFUSE ); NxXbox::set_pixel_shader( PixelShader1 ); // The additional number (+5 is minimum) is to reserve enough overhead for the encoding parameters. It can safely be more, but no less. p_push = D3DDevice_BeginPush( dword_count + 32 ); // Note that p_push is returned as a pointer to write-combined memory. Writes to write-combined memory should be // consecutive and in increasing order. Reads should be avoided. Additionally, any CPU reads from memory or the // L2 cache can force expensive partial flushes of the 32-byte write-combine cache. p_push[0] = D3DPUSH_ENCODE( D3DPUSH_SET_BEGIN_END, 1 ); p_push[1] = D3DPT_QUADLIST; p_push += 2; // Set up loop variables here, since we be potentially enetering the loop more than once. lp = 0; p_particle = mp_particle_array; p_v = mp_vertices[0]; while( dword_count > 0 ) { int dwords_written = 0; // NOTE: A maximum of 2047 DWORDs can be specified to D3DPUSH_ENCODE. If there is more than 2047 DWORDs of vertex // data, simply split the data into multiple D3DPUSH_ENCODE( D3DPUSH_INLINE_ARRAY ) sections. p_push[0] = D3DPUSH_ENCODE( D3DPUSH_NOINCREMENT_FLAG | D3DPUSH_INLINE_ARRAY, ( dword_count > 2047 ) ? ((int)( 2047 / dwords_per_particle )) * dwords_per_particle: dword_count ); ++p_push; for( ; lp < m_num_particles; lp++, p_particle++, p_v += 3 ) { // Check to see if writing another particle will take us over the edge. if(( dwords_written + dwords_per_particle ) > 2047 ) { break; } float terp = p_particle->m_time / p_particle->m_life; Mth::Vector pos[2]; p_v = &mp_vertices[0][lp*3]; pos[0].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] ); p_v = &mp_vertices[1][lp*3]; pos[1].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] ); Mth::Vector part_vec = pos[1] - pos[0]; Mth::Vector perp_vec = Mth::CrossProduct( part_vec, at ); perp_vec.Normalize(); // Dynamic bounding box calculation. // if( lp == 0 ) // { // min = pos[0]; // max = pos[0]; // } // else // { // if( pos[0][X] < min[X] ) min[X] = pos[0][X]; else if( pos[0][X] > max[X] ) max[X] = pos[0][X]; // if( pos[0][Y] < min[Y] ) min[Y] = pos[0][Y]; else if( pos[0][Y] > max[Y] ) max[Y] = pos[0][Y]; // if( pos[0][Z] < min[Z] ) min[Z] = pos[0][Z]; else if( pos[0][Z] > max[Z] ) max[Z] = pos[0][Z]; // } float w = p_particle->m_sw + ( ( p_particle->m_ew - p_particle->m_sw ) * terp ); Mth::Vector tmp[4]; if( m_mid_time >= 0.0f ) { if ( terp < m_mid_time ) { p_col0 = m_start_color; p_col1 = m_mid_color; // Adjust interpolation for this half of the color blend. terp = terp / m_mid_time; } else { p_col0 = m_mid_color; p_col1 = m_end_color; // Adjust interpolation for this half of the color blend. terp = ( terp - m_mid_time ) / ( 1.0f - m_mid_time ); } } else { // No mid color specified. p_col0 = m_start_color; p_col1 = m_end_color; } Image::RGBA start = *p_col0++; Image::RGBA end = *p_col1++; color[0].b = start.r + (uint8)(( ((float)( end.r - start.r )) * terp )); color[0].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp )); color[0].r = start.b + (uint8)(( ((float)( end.b - start.b )) * terp )); color[0].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp )); tmp[0] = pos[0] + ( perp_vec * w ); tmp[1] = pos[0] - ( perp_vec * w ); for( int c = 1; c < m_num_vertex_buffers; c++ ) { start = *p_col0++; end = *p_col1++; color[1].b = start.r + (uint8)(( ((float)( end.r - start.r )) * terp )); color[1].g = start.g + (uint8)(( ((float)( end.g - start.g )) * terp )); color[1].r = start.b + (uint8)(( ((float)( end.b - start.b )) * terp )); color[1].a = start.a + (uint8)(( ((float)( end.a - start.a )) * terp )); if( c > 1 ) { p_v = &mp_vertices[c][lp*3]; pos[1].Set( p_v[0] + m_pos[X], p_v[1] + m_pos[Y], p_v[2] + m_pos[Z] ); part_vec = pos[1] - pos[0]; perp_vec = Mth::CrossProduct( part_vec, at ); perp_vec.Normalize(); } tmp[2] = pos[1] + ( perp_vec * w ); tmp[3] = pos[1] - ( perp_vec * w ); p_push[0] = *((DWORD*)&tmp[0][X] ); p_push[1] = *((DWORD*)&tmp[0][Y] ); p_push[2] = *((DWORD*)&tmp[0][Z] ); p_push[3] = *((DWORD*)&color[0] ); p_push += 4; p_push[0] = *((DWORD*)&tmp[1][X] ); p_push[1] = *((DWORD*)&tmp[1][Y] ); p_push[2] = *((DWORD*)&tmp[1][Z] ); p_push[3] = *((DWORD*)&color[0] ); p_push += 4; p_push[0] = *((DWORD*)&tmp[3][X] ); p_push[1] = *((DWORD*)&tmp[3][Y] ); p_push[2] = *((DWORD*)&tmp[3][Z] ); p_push[3] = *((DWORD*)&color[1] ); p_push += 4; p_push[0] = *((DWORD*)&tmp[2][X] ); p_push[1] = *((DWORD*)&tmp[2][Y] ); p_push[2] = *((DWORD*)&tmp[2][Z] ); p_push[3] = *((DWORD*)&color[1] ); p_push += 4; color[0] = color[1]; pos[0] = pos[1]; tmp[0] = tmp[2]; tmp[1] = tmp[3]; } dwords_written += dwords_per_particle; dword_count -= dwords_per_particle; } } p_push[0] = D3DPUSH_ENCODE( D3DPUSH_SET_BEGIN_END, 1 ); p_push[1] = 0; p_push += 2; D3DDevice_EndPush( p_push ); // Set the mesh bounding box and sphere. // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_bbox.SetMin( min ); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_bbox.SetMax( max ); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_center = D3DXVECTOR3( min[X] + (( max[X] - min[X] ) * 0.5f ), min[Y] + (( max[Y] - min[Y] ) * 0.5f ), min[Z] + (( max[Z] - min[Z] ) * 0.5f )); // mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_radius = 360.0f; // And the scene bounding sphere. // mp_engine_particle->mp_scene->m_sphere_center = mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_center; // mp_engine_particle->mp_scene->m_sphere_radius = mp_engine_particle->mp_scene->m_semitransparent_meshes[0]->m_sphere_radius; } } } // Nx