#!/usr/bin/env python # Elasticsearch Recon Ingestion Scripts (ERIS) - Developed by Acidvegas (https://git.acid.vegas/eris) # Masscan Log File Ingestion: # # This script takes JSON formatted masscan logs with banners and indexes them into Elasticsearch. # # Saving my "typical" masscan setup & command here for reference to myself: # apt-get install iptables masscan libpcap-dev screen # /sbin/iptables -A INPUT -p tcp --dport 61010 -j DROP # printf "0.0.0.0/8\n10.0.0.0/8\n100.64.0.0/10\n127.0.0.0/8\n169.254.0.0/16\n172.16.0.0/12\n192.0.0.0/24\n192.0.0.0/29\n192.0.0.170/32\n192.0.0.171/32\n192.0.2.0/24\n192.88.99.0/24\n192.168.0.0/16\n198.18.0.0/15\n198.51.100.0/24\n203.0.113.0/24\n240.0.0.0/4\n255.255.255.255/32\n" > exclude.conf # screen -S scan # masscan 0.0.0.0/0 -p8080,8888,8000 --banners --source-port 61010 --open-only --rate 35000 --excludefile exclude.conf -oJ output_new.json --interactive # # Note: The above iptables rule is not persistent and will be removed on reboot. import argparse import json import logging import os import re import time try: from elasticsearch import Elasticsearch, helpers except ImportError: raise ImportError('Missing required \'elasticsearch\' library. (pip install elasticsearch)') # Setting up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%m/%d %I:%M:%S') class ElasticIndexer: def __init__(self, es_host: str, es_port: int, es_user: str, es_password: str, es_api_key: str, es_index: str, dry_run: bool = False, self_signed: bool = False, retries: int = 10, timeout: int = 30): ''' Initialize the Elastic Search indexer. :param es_host: Elasticsearch host(s) :param es_port: Elasticsearch port :param es_user: Elasticsearch username :param es_password: Elasticsearch password :param es_api_key: Elasticsearch API Key :param es_index: Elasticsearch index name :param dry_run: If True, do not initialize Elasticsearch client :param self_signed: If True, do not verify SSL certificates :param retries: Number of times to retry indexing a batch before failing :param timeout: Number of seconds to wait before retrying a batch ''' self.dry_run = dry_run self.es = None self.es_index = es_index if not dry_run: es_config = { 'hosts': [f'{es_host}:{es_port}'], 'verify_certs': self_signed, 'ssl_show_warn': self_signed, 'request_timeout': timeout, 'max_retries': retries, 'retry_on_timeout': True, 'sniff_on_start': True, 'sniff_on_node_failure': True, 'min_delay_between_sniffing': 60 } if es_api_key: es_config['headers'] = {'Authorization': f'ApiKey {es_api_key}'} else: es_config['basic_auth'] = (es_user, es_password) self.es = Elasticsearch(**es_config) def create_index(self, shards: int = 1, replicas: int = 1): '''Create the Elasticsearch index with the defined mapping.''' mapping = { 'settings': { 'number_of_shards': shards, 'number_of_replicas': replicas }, 'mappings': { 'properties': { 'ip': { 'type': 'ip' }, 'port': { 'type': 'integer' }, 'proto': { 'type': 'keyword' }, 'service': { 'type': 'keyword' }, 'banner': { 'type': 'text', 'fields': { 'keyword': { 'type': 'keyword', 'ignore_above': 256 } } }, 'ref_id': { 'type': 'keyword' }, 'seen': { 'type': 'date' } } } } if not self.es.indices.exists(index=self.es_index): response = self.es.indices.create(index=self.es_index, body=mapping) if response.get('acknowledged') and response.get('shards_acknowledged'): logging.info(f'Index \'{self.es_index}\' successfully created.') else: raise Exception(f'Failed to create index. ({response})') else: logging.warning(f'Index \'{self.es_index}\' already exists.') def get_cluster_size(self) -> int: '''Get the number of nodes in the Elasticsearch cluster.''' cluster_stats = self.es.cluster.stats() number_of_nodes = cluster_stats['nodes']['count']['total'] return number_of_nodes def process_file(self, file_path: str, watch: bool = False, chunk: dict = {}): ''' Read and index Masscan records in batches to Elasticsearch, handling large volumes efficiently. :param file_path: Path to the Masscan log file :param batch_size: Number of records to process before indexing :param watch: If True, input file will be watched for new lines and indexed in real time Example record: { "ip": "43.134.51.142", "timestamp": "1705255468", # Convert to ZULU BABY "ports": [ # Typically only one port per record, but we will create a record for each port opened { "port": 22, "proto": "tcp", "service": { # This field is optional "name": "ssh", "banner": "SSH-2.0-OpenSSH_8.9p1 Ubuntu-3ubuntu0.4" } } ] } Will be indexed as: { "ip": "43.134.51.142", "port": 22, "proto": "tcp", "service": "ssh", # Optional: not every record will have a service name ("unknown" is ignored) "banner": "SSH-2.0-OpenSSH_8.9p1 Ubuntu-3ubuntu0.4", # Optional: not every record will have a banner "seen": "2021-10-08T02:04:28Z", "ref_id": "?sKfOvsC4M4a2W8PaC4zF?" # This is optional and will only be present if the banner contains a reference ID (TCP RST Payload, Might be useful?) } ''' count = 0 records = [] with open(file_path, 'r') as file: for line in (file := follow(file) if watch else file): line = line.strip() if not line or not line.startswith('{'): continue record = json.loads(line) for port_info in record['ports']: struct = { 'ip': record['ip'], 'port': port_info['port'], 'proto': port_info['proto'], 'seen': time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime(int(record['timestamp']))), } if 'service' in port_info: if 'name' in port_info['service']: if port_info['service']['name'] != 'unknown': struct['service'] = port_info['service']['name'] if 'banner' in port_info['service']: banner = ' '.join(port_info['service']['banner'].split()) # Remove extra whitespace if banner: match = re.search(r'\(Ref\.Id: (.*?)\)', banner) if match: struct['ref_id'] = match.group(1) else: struct['banner'] = banner if self.dry_run: print(struct) else: struct = {'_index': self.es_index, '_source': struct} records.append(struct) count += 1 if len(records) >= chunk['batch']: self.bulk_index(records, file_path, chunk, count) records = [] if records: self.bulk_index(records, file_path, chunk, count) def bulk_index(self, documents: list, file_path: str, chunk: dict, count: int): ''' Index a batch of documents to Elasticsearch. :param documents: List of documents to index :param file_path: Path to the file being indexed :param count: Total number of records processed ''' remaining_documents = documents parallel_bulk_config = { 'client': self.es, 'chunk_size': chunk['size'], 'max_chunk_bytes': chunk['max_size'] * 1024 * 1024, # MB 'thread_count': chunk['threads'], 'queue_size': 2 } while remaining_documents: failed_documents = [] try: for success, response in helpers.parallel_bulk(actions=remaining_documents, **parallel_bulk_config): if not success: failed_documents.append(response) if not failed_documents: ingested = parallel_bulk_config['chunk_size'] * parallel_bulk_config['thread_count'] logging.info(f'Successfully indexed {ingested:,} ({count:,} processed) records to {self.es_index} from {file_path}') break else: logging.warning(f'Failed to index {len(failed_documents):,} failed documents! Retrying...') remaining_documents = failed_documents except Exception as e: logging.error(f'Failed to index documents! ({e})') time.sleep(30) def follow(file) -> str: ''' Generator function that yields new lines in a file in real time. :param file: File object to read from ''' file.seek(0,2) # Go to the end of the file while True: line = file.readline() if not line: time.sleep(0.1) continue yield line def main(): '''Main function when running this script directly.''' parser = argparse.ArgumentParser(description='Index data into Elasticsearch.') parser.add_argument('input_path', help='Path to the input file or directory') # General arguments parser.add_argument('--dry-run', action='store_true', help='Dry run (do not index records to Elasticsearch)') parser.add_argument('--watch', action='store_true', help='Watch the input file for new lines and index them in real time') # Elasticsearch arguments parser.add_argument('--host', default='localhost', help='Elasticsearch host') parser.add_argument('--port', type=int, default=9200, help='Elasticsearch port') parser.add_argument('--user', default='elastic', help='Elasticsearch username') parser.add_argument('--password', default=os.getenv('ES_PASSWORD'), help='Elasticsearch password (if not provided, check environment variable ES_PASSWORD)') parser.add_argument('--api-key', help='Elasticsearch API Key for authentication') parser.add_argument('--self-signed', action='store_false', help='Elasticsearch is using self-signed certificates') # Elasticsearch indexing arguments parser.add_argument('--index', default='masscan-logs', help='Elasticsearch index name') parser.add_argument('--shards', type=int, default=1, help='Number of shards for the index') parser.add_argument('--replicas', type=int, default=1, help='Number of replicas for the index') # Batch arguments (for fine tuning performance) parser.add_argument('--batch-max', type=int, default=10, help='Maximum size in MB of a batch') parser.add_argument('--batch-size', type=int, default=5000, help='Number of records to index in a batch') parser.add_argument('--batch-threads', type=int, default=2, help='Number of threads to use when indexing in batches') # NOTE: Using --batch-threads as 4 and --batch-size as 10000 means we will process 40,000 records per-node before indexing, so 3 nodes would process 120,000 records before indexing # Elasticsearch retry arguments parser.add_argument('--retries', type=int, default=10, help='Number of times to retry indexing a batch before failing') parser.add_argument('--timeout', type=int, default=30, help='Number of seconds to wait before retrying a batch') args = parser.parse_args() if not os.path.exists(args.input_path): raise FileNotFoundError(f'Input file {args.input_path} does not exist') elif not os.path.isdir(args.input_path) and not os.path.isfile(args.input_path): raise ValueError(f'Input path {args.input_path} is not a file or directory') if not args.dry_run: if args.batch_size < 1: raise ValueError('Batch size must be greater than 0') elif args.retries < 1: raise ValueError('Number of retries must be greater than 0') elif args.timeout < 5: raise ValueError('Timeout must be greater than 4') elif args.batch_max < 1: raise ValueError('Batch max size must be greater than 0') elif args.batch_threads < 1: raise ValueError('Batch threads must be greater than 0') elif not args.host: raise ValueError('Missing required Elasticsearch argument: host') elif not args.api_key and (not args.user or not args.password): raise ValueError('Missing required Elasticsearch argument: either user and password or apikey') elif args.shards < 1: raise ValueError('Number of shards must be greater than 0') elif args.replicas < 0: raise ValueError('Number of replicas must be greater than 0') edx = ElasticIndexer(args.host, args.port, args.user, args.password, args.api_key, args.index, args.dry_run, args.self_signed, args.retries, args.timeout) if not args.dry_run: time.sleep(3) # Delay to allow time for sniffing to complete nodes = edx.get_cluster_size() logging.info(f'Connected to {nodes:,} Elasticsearch node(s)') edx.create_index(args.shards, args.replicas) # Create the index if it does not exist chunk = { 'size': args.batch_size, 'max_size': args.batch_max * 1024 * 1024, 'threads': args.batch_threads } chunk['batch'] = nodes * (chunk['size'] * chunk['threads']) else: chunk = {} # Ugly hack to get this working... if os.path.isfile(args.input_path): logging.info(f'Processing file: {args.input_path}') edx.process_file(args.input_path, args.watch, chunk) elif os.path.isdir(args.input_path): count = 1 total = len(os.listdir(args.input_path)) logging.info(f'Processing {total:,} files in directory: {args.input_path}') for file in sorted(os.listdir(args.input_path)): file_path = os.path.join(args.input_path, file) if os.path.isfile(file_path): logging.info(f'[{count:,}/{total:,}] Processing file: {file_path}') edx.process_file(file_path, args.watch, chunk) count += 1 else: logging.warning(f'[{count:,}/{total:,}] Skipping non-file: {file_path}') if __name__ == '__main__': main()