// Demo using arcFill to draw ellipses and a segmented elipse #include // Hardware-specific library #include TFT_eSPI tft = TFT_eSPI(); // Invoke custom library #define DEG2RAD 0.0174532925 #define LOOP_DELAY 10 // Loop delay to slow things down byte inc = 0; unsigned int col = 0; byte red = 31; // Red is the top 5 bits of a 16 bit colour value byte green = 0;// Green is the middle 6 bits byte blue = 0; // Blue is the bottom 5 bits byte state = 0; void setup(void) { tft.begin(); tft.setRotation(1); tft.fillScreen(TFT_BLACK); } void loop() { // Continuous elliptical arc drawing fillArc(160, 120, inc * 6, 1, 140, 100, 10, rainbow(col)); // Continuous segmented (inc*2) elliptical arc drawing fillArc(160, 120, ((inc * 2) % 60) * 6, 1, 120, 80, 30, rainbow(col)); // Circle drawing using arc with arc width = radius fillArc(160, 120, inc * 6, 1, 42, 42, 42, rainbow(col)); inc++; col += 1; if (col > 191) col = 0; if (inc > 59) inc = 0; delay(LOOP_DELAY); } // ######################################################################### // Draw a circular or elliptical arc with a defined thickness // ######################################################################### // x,y == coords of centre of arc // start_angle = 0 - 359 // seg_count = number of 6 degree segments to draw (60 => 360 degree arc) // rx = x axis outer radius // ry = y axis outer radius // w = width (thickness) of arc in pixels // colour = 16 bit colour value // Note if rx and ry are the same then an arc of a circle is drawn void fillArc(int x, int y, int start_angle, int seg_count, int rx, int ry, int w, unsigned int colour) { byte seg = 6; // Segments are 3 degrees wide = 120 segments for 360 degrees byte inc = 6; // Draw segments every 3 degrees, increase to 6 for segmented ring // Calculate first pair of coordinates for segment start float sx = cos((start_angle - 90) * DEG2RAD); float sy = sin((start_angle - 90) * DEG2RAD); uint16_t x0 = sx * (rx - w) + x; uint16_t y0 = sy * (ry - w) + y; uint16_t x1 = sx * rx + x; uint16_t y1 = sy * ry + y; // Draw colour blocks every inc degrees for (int i = start_angle; i < start_angle + seg * seg_count; i += inc) { // Calculate pair of coordinates for segment end float sx2 = cos((i + seg - 90) * DEG2RAD); float sy2 = sin((i + seg - 90) * DEG2RAD); int x2 = sx2 * (rx - w) + x; int y2 = sy2 * (ry - w) + y; int x3 = sx2 * rx + x; int y3 = sy2 * ry + y; tft.fillTriangle(x0, y0, x1, y1, x2, y2, colour); tft.fillTriangle(x1, y1, x2, y2, x3, y3, colour); // Copy segment end to sgement start for next segment x0 = x2; y0 = y2; x1 = x3; y1 = y3; } } // ######################################################################### // Return the 16 bit colour with brightness 0-100% // ######################################################################### unsigned int brightness(unsigned int colour, int brightness) { byte red = colour >> 11; byte green = (colour & 0x7E0) >> 5; byte blue = colour & 0x1F; blue = (blue * brightness) / 100; green = (green * brightness) / 100; red = (red * brightness) / 100; return (red << 11) + (green << 5) + blue; } // ######################################################################### // Return a 16 bit rainbow colour // ######################################################################### unsigned int rainbow(byte value) { // Value is expected to be in range 0-127 // The value is converted to a spectrum colour from 0 = blue through to 127 = red switch (state) { case 0: green ++; if (green == 64) { green = 63; state = 1; } break; case 1: red--; if (red == 255) { red = 0; state = 2; } break; case 2: blue ++; if (blue == 32) { blue = 31; state = 3; } break; case 3: green --; if (green == 255) { green = 0; state = 4; } break; case 4: red ++; if (red == 32) { red = 31; state = 5; } break; case 5: blue --; if (blue == 255) { blue = 0; state = 0; } break; } return red << 11 | green << 5 | blue; }